IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/99s-17.html
   My bibliography  Save this paper

Content Horizons for Forecasts of Economic Time Series

Author

Listed:
  • John W. Galbraith

Abstract

We consider the problem of determining the horizon beyond which forecasts from time series models of stationary processes add nothing to the forecast implicit in the conditional mean. We refer to this as the content horizon for forecasts, and define a forecast content function at horizons s = 1, ... S as the proportionate reduction in mean squared forecast error available from a time series forecast relative to the unconditional mean. This function depends upon parameter estimation uncertainty as well as on autocorrelation structure of the process under investigation. We give an approximate expression - to o(T-1) - for the forecast content function at s for a general autoregressive processes, and show by simulation that the expression gives a good approximation even at modest sample sizes. Finally we consider parametric and non-parametric (kernel) estimators of the empirical forecast content function, and apply the results to forecast horizons for inflation and the growth rate of GDP, in U.S. and Canadian data. Nous considérons la détermination de l'horizon après lequel les prévisions provenant des modèles des series chronologiques stationnares n'ajoutent rien à la valeur de la prévision implicite dans la moyenne. Nous appellons cette quantité le content horizon pour prévisions, et nous définissons la fonction de valeur ajoutée aux horizons s = 1, ... S par la réduction proportionnelle dans la moyenne des erreurs de prévisions carrées disponible en utilisant une prévision provenant d'un modèle formel relatif à la moyenne non-conditionelle. Cette quantité dépend de l'incertitude dans les estimés des paramètres du modèle, ainsi que des autocorrélations du processus considéré. Nous donnons une expression approximative - jusqu'à o(T-1) - pour la fonction de valeur ajoutée à s pour les processus autorégressifs généraux, et nous démontrons par simulation que l'expression est bonne même dans les petits échantillons. Enfin nous considérons les estimés paramétriques et non-paramétriques (kernel) pour la fonction de valeur ajoutée empirique, en appliquant les résultats aux horizons de prévision pour le taux de croissance du PNB et le taux d'inflation, au Canada et aux États-Unis.

Suggested Citation

  • John W. Galbraith, 1999. "Content Horizons for Forecasts of Economic Time Series," CIRANO Working Papers 99s-17, CIRANO.
  • Handle: RePEc:cir:cirwor:99s-17
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/99s-17.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    2. Neil R. Ericsson & Jaime Marquez, 1998. "A framework for economic forecasting," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 228-266.
    3. Francis X. Diebold & Lutz Kilian, 2001. "Measuring predictability: theory and macroeconomic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
    4. Sampson, Michael, 1991. "The Effect of Parameter Uncertainty on Forecast Variances and Confidence Intervals for Unit Root and Trend Stationary Time-Series Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(1), pages 67-76, Jan.-Marc.
    5. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
    6. V. A. Samaranayake & David P. Hasza, 1988. "Properties Of Predictors For Multivariate Autoregressive Models With Estimated Parameters," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(4), pages 361-383, July.
    7. Marcel Boyer, 1999. "Les Expos, l'OSM, les universités, les hôpitaux : Le coût d'un déficit de 400 000 emplois au Québec = Expos, Montreal Symphony Orchestra, Universities, Hospitals: The Cost of a 400,000-Job Shortfall i," CIRANO Papers 99c-01, CIRANO.
    8. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John G. Galbraith & Greg Tkacz, 2006. "How Far Can We Forecast? Forecast Content Horizons For Some Important Macroeconomic Time Series," Departmental Working Papers 2006-13, McGill University, Department of Economics.
    2. Marc Brisson & Bryan Campbell & John W. Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
    3. Serena Ng & Timothy Vogelsang, 1999. "Forecasting Dynamic Time Series in the Presence of Deterministic Components," Boston College Working Papers in Economics 445, Boston College Department of Economics.
    4. Patrice Roussel & Michel Tremblay, 1999. "Modelling the Role of Organizational Justice: Effects on Satisfaction and Unionization Propensity of Canadian Managers," CIRANO Working Papers 99s-16, CIRANO.
    5. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    6. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    7. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    8. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    9. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    10. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    11. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    12. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    13. Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
    14. Creemers, An & Aerts, Marc & Hens, Niel & Molenberghs, Geert, 2012. "A nonparametric approach to weighted estimating equations for regression analysis with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 100-113, January.
    15. Long, Ngo Van & Soubeyran, Antoine, 2001. "Cost Manipulation Games in Oligopoly, with Costs of Manipulating," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(2), pages 505-533, May.
    16. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    17. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    18. Ehrhart, Karl-Martin & Gardner, Roy & von Hagen, Jurgen & Keser, Claudia, 2007. "Budget processes: Theory and experimental evidence," Games and Economic Behavior, Elsevier, vol. 59(2), pages 279-295, May.
    19. David McMillan & Isabel Ruiz & Alan Speight, 2010. "Correlations and spillovers among three euro rates: evidence using realised variance," The European Journal of Finance, Taylor & Francis Journals, vol. 16(8), pages 753-767.
    20. Néstor Duch-Brown & José García-Quevedo & Daniel Montolio, 2011. "The link between public support and private R&D effort: What is the optimal subsidy?," Working Papers XREAP2011-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.

    More about this item

    Keywords

    Autoregressive process; forecast horizon; GDP; inflation; Processus autorégressif; horizon de prévision; PNB; taux d'inflation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.