IDEAS home Printed from https://ideas.repec.org/p/biw/wpaper/119.html
   My bibliography  Save this paper

A novel dataset of emission abatement sector extended input-output table for environmental policy analysis

Author

Listed:
  • Ke Wang
  • Jiayu Wang
  • Yi-Ming Wei
  • Chi Zhang

Abstract

Environmentally extended input-output table (EEIOT), a balanced matrix of industrial commodity and environmental resources, is widely used to evaluate environmental policy impacts. However, the existing EEIOTs contain energy consumption and pollution emission but neglect emission abatement cost and benefit. In this study, a novel Chinese emission abatement sector extended input-output table (EAS-IOT) is developed through introducing abatement cost, emission charge and abatement benefit into the conventional input-output table. Furthermore, this new EAS-IOT is applied to estimate the environmental efficiency and assess the effects of environmental policies on economy and environment. Results show that the new framework of EAS-IOT has advantage on solving the problem of biased efficiency estimation related to the conventional input-output table.

Suggested Citation

  • Ke Wang & Jiayu Wang & Yi-Ming Wei & Chi Zhang, 2018. "A novel dataset of emission abatement sector extended input-output table for environmental policy analysis," CEEP-BIT Working Papers 119, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  • Handle: RePEc:biw:wpaper:119
    as

    Download full text from publisher

    File URL: http://ceep.bit.edu.cn/docs/2018-10/20181012083239987690.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," Working Papers halshs-01247183, HAL.
    2. Xiangzheng Deng & Fan Zhang & Zhan Wang & Xing Li & Tao Zhang, 2014. "An Extended Input Output Table Compiled for Analyzing Water Demand and Consumption at County Level in China," Sustainability, MDPI, Open Access Journal, vol. 6(6), pages 1-20, May.
    3. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    4. Tukker, Arnold & Poliakov, Evgueni & Heijungs, Reinout & Hawkins, Troy & Neuwahl, Frederik & Rueda-Cantuche, José M. & Giljum, Stefan & Moll, Stephan & Oosterhaven, Jan & Bouwmeester, Maaike, 2009. "Towards a global multi-regional environmentally extended input-output database," Ecological Economics, Elsevier, vol. 68(7), pages 1928-1937, May.
    5. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input–output analysis for China: A survey of the literature," Energy Economics, Elsevier, vol. 48(C), pages 81-88.
    6. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    7. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    8. Hubacek, Klaus & Sun, Laixiang, 2001. "A scenario analysis of China's land use and land cover change: incorporating biophysical information into input-output modeling," Structural Change and Economic Dynamics, Elsevier, vol. 12(4), pages 367-397, December.
    9. Ke Wang, 2016. "Potential carbon emission abatement cost recovery from carbon emission trading in China: an estimation of industry sector," CEEP-BIT Working Papers 94, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. repec:bla:inecol:v:21:y:2017:i:4:p:953-965 is not listed on IDEAS
    11. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    12. Rocco, Matteo V. & Colombo, Emanuela, 2016. "Internalization of human labor in embodied energy analysis: Definition and application of a novel approach based on Environmentally extended Input-Output analysis," Applied Energy, Elsevier, vol. 182(C), pages 590-601.
    13. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.
    14. Reynolds, Christian John & Piantadosi, Julia & Buckley, Jonathan David & Weinstein, Philip & Boland, John, 2015. "Evaluation of the environmental impact of weekly food consumption in different socio-economic households in Australia using environmentally extended input–output analysis," Ecological Economics, Elsevier, vol. 111(C), pages 58-64.
    15. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," AMSE Working Papers 1548, Aix-Marseille School of Economics, France, revised 10 Nov 2015.
    16. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    17. Mahlberg, Bernhard & Luptacik, Mikulas, 2014. "Eco-efficiency and eco-productivity change over time in a multisectoral economic system," European Journal of Operational Research, Elsevier, vol. 234(3), pages 885-897.
    18. Osmo Forssell & Karen Polenske, 1998. "Introduction: Input-Output and the Environment," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 91-97.
    19. repec:gam:jsusta:v:9:y:2017:i:11:p:2030-:d:117826 is not listed on IDEAS
    20. repec:bla:inecol:v:22:y:2018:i:3:p:502-515 is not listed on IDEAS
    21. Li, J.S. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2015. "Mercury emissions by Beijing׳s fossil energy consumption: Based on environmentally extended input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1167-1175.
    22. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    23. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:rensus:v:106:y:2019:i:c:p:97-109 is not listed on IDEAS
    2. repec:eee:enepol:v:131:y:2019:i:c:p:251-261 is not listed on IDEAS

    More about this item

    Keywords

    Data on emission abatement cost and benefit; extended input-output table; emission abatement sector; environmental policy;

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:biw:wpaper:119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhi-Fu Mi). General contact details of provider: http://edirc.repec.org/data/cebitcn.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.