IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i12d10.1007_s10668-021-02024-5.html
   My bibliography  Save this article

Analysis of import substitution policy with an emphasis on environmental issues based on environmental input–output (EIO) model

Author

Listed:
  • Mohammad Aghapour Sabbaghi

    (Islamic Azad University)

  • Afsaneh Naeimifar

    (Islamic Azad University)

Abstract

The economic sanctions imposed against Iran have been significantly increased in recent years. Such sanctions usually target the business sectors of Iran and limit trade and monetary flows. Many studies have examined the various impacts of sanctions on Iran's economy. The economic strategies of countering sanctions, however, is an understudied subject in the economic literature. The most important policy that has been considered in dealing with sanctions is the import substitution policy (IS). Because in a situation where the country is facing a set of policies that affect foreign exchange earnings, employment and economic welfare, it is necessary to pay more attention to the resources and capacities of domestic production. But, IS policy to mitigate the negative effects of sanctions could increase air pollution and negative environmental effects. Therefore, in this study, the adjusted environmental input–output model has been used to estimate the value added, employment and emission of pollutants in 17 active economic sectors as a result of the implementation of an import substitution policy. The results of this study highlight the priority of investment in import substitution in economic sectors in terms of environmental impacts. More than 70% of the industries surveyed (12 industries) have high potential for pollution. In order to achieve the goals of sustainable development, it is recommended to develop an import substitution policy in sectors with high economic potential and low pollution. The three sectors of pharmaceutical and health products, textile products, wood and paper, food and beverage products have the highest investment priority.

Suggested Citation

  • Mohammad Aghapour Sabbaghi & Afsaneh Naeimifar, 2022. "Analysis of import substitution policy with an emphasis on environmental issues based on environmental input–output (EIO) model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14130-14162, December.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:12:d:10.1007_s10668-021-02024-5
    DOI: 10.1007/s10668-021-02024-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-02024-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-02024-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    2. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    3. Ghasseminejad, Saeed & Jahan-Parvar, Mohammad R., 2021. "The impact of financial sanctions: The case of Iran," Journal of Policy Modeling, Elsevier, vol. 43(3), pages 601-621.
    4. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    5. McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2008. "The CO2 'trade balance' between Scotland and the rest of the UK: Performing a multi-region environmental input-output analysis with limited data," Ecological Economics, Elsevier, vol. 66(4), pages 662-673, July.
    6. Lenzen, Manfred, 2003. "Environmentally important paths, linkages and key sectors in the Australian economy," Structural Change and Economic Dynamics, Elsevier, vol. 14(1), pages 1-34, March.
    7. Hiau Looi Kee & Heiwai Tang, 2016. "Domestic Value Added in Exports: Theory and Firm Evidence from China," American Economic Review, American Economic Association, vol. 106(6), pages 1402-1436, June.
    8. Gay, Philip W. & Proops, John L.R., 1993. "Carbon---dioxide production by the UK economy: An input-output assessment," Applied Energy, Elsevier, vol. 44(2), pages 113-130.
    9. Kirsten S. Wiebe & Martin Bruckner & Stefan Giljum & Christian Lutz, 2012. "Calculating Energy-Related Co 2 Emissions Embodied In International Trade Using A Global Input--Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 24(2), pages 113-139, November.
    10. Forsund, Finn R. & Strom, Steinar, 1976. "The generation of residual flows in Norway: an input-output approach," Journal of Environmental Economics and Management, Elsevier, vol. 3(2), pages 129-141, August.
    11. Engstrom, Rebecka & Wadeskog, Anders & Finnveden, Goran, 2007. "Environmental assessment of Swedish agriculture," Ecological Economics, Elsevier, vol. 60(3), pages 550-563, January.
    12. Gary Clyde Hufbauer & Kimberly Ann Elliott & Tess Cyrus & Elizabeth Winston, 1997. "US Economic Sanctions: Their Impact on Trade, Jobs, and Wages," Working Paper Series Working Paper Special (2), Peterson Institute for International Economics.
    13. Louise Laumann Kjaer & Niels Karim Høst-Madsen & Jannick H. Schmidt & Tim C. McAloone, 2015. "Application of Environmental Input-Output Analysis for Corporate and Product Environmental Footprints—Learnings from Three Cases," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    14. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.
    15. Perobelli, Fernando Salgueiro & Faria, Weslem Rodrigues & Vale, Vinicius de Almeida, 2015. "The increase in Brazilian household income and its impact on CO2 emissions: Evidence for 2003 and 2009 from input–output tables," Energy Economics, Elsevier, vol. 52(PA), pages 228-239.
    16. Li, Jizhe & Huang, Guohe & Liu, Lirong, 2018. "Ecological network analysis for urban metabolism and carbon emissions based on input-output tables: A case study of Guangdong province," Ecological Modelling, Elsevier, vol. 383(C), pages 118-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    2. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    3. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    4. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    5. Zhen, Wei & Zhong, Zhangqi & Wang, Yichen & Miao, Lu & Qin, Quande & Wei, Yi-Ming, 2019. "Evolution of urban household indirect carbon emission responsibility from an inter-sectoral perspective: A case study of Guangdong, China," Energy Economics, Elsevier, vol. 83(C), pages 197-207.
    6. Perobelli, Fernando Salgueiro & Faria, Weslem Rodrigues & Vale, Vinicius de Almeida, 2015. "The increase in Brazilian household income and its impact on CO2 emissions: Evidence for 2003 and 2009 from input–output tables," Energy Economics, Elsevier, vol. 52(PA), pages 228-239.
    7. Gabriela Michalek & Reimund Schwarze, 2015. "Carbon leakage: pollution, trade or politics?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1471-1492, December.
    8. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    9. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    10. Chen, Quanrun & Chen, Xikang & Pei, Jiansuo & Yang, Cuihong & Zhu, Kunfu, 2020. "Estimating domestic content in China’s exports: Accounting for a dual-trade regime," Economic Modelling, Elsevier, vol. 89(C), pages 43-54.
    11. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.
    12. Liu, Ying & Jayanthakumaran, Kankesu & Neri, Frank, 2013. "Who is responsible for the CO2 emissions that China produces?," Energy Policy, Elsevier, vol. 62(C), pages 1412-1419.
    13. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    14. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    15. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    16. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    17. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    18. Haitao Zheng & Qi Fang & Cheng Wang & Huiwen Wang & Ruoen Ren, 2017. "China’s Carbon Footprint Based on Input-Output Table Series: 1992–2020," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    19. Chen, Z.M. & Chen, G.Q., 2011. "Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world," Energy Policy, Elsevier, vol. 39(5), pages 2899-2909, May.
    20. Wencheng Zhang & Shuijun Peng, 2016. "Analysis on CO 2 Emissions Transferred from Developed Economies to China through Trade," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 24(2), pages 68-89, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:12:d:10.1007_s10668-021-02024-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.