IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/523.html
   My bibliography  Save this paper

How do oil price forecast errors impact inflation forecast errors? An empirical analysis from French and US inflation forecasts

Author

Listed:
  • F. Bec
  • A. De Gaye

Abstract

This paper proposes an empirical investigation of the impact of oil price forecast errors on inflation forecast errors for two different sets of recent forecasts data: the median of SPF inflation forecasts for the U.S. and the Central Bank inflation forecasts for France. Mainly two salient points emerge from our results. First, there is a significant contribution of oil price forecast errors to the explanation of inflation forecast errors, whatever the country or the period considered. Second, the pass-through of oil price forecast errors to inflation forecast errors is multiplied by around 2 when the oil price volatility is large.

Suggested Citation

  • F. Bec & A. De Gaye, 2014. "How do oil price forecast errors impact inflation forecast errors? An empirical analysis from French and US inflation forecasts," Working papers 523, Banque de France.
  • Handle: RePEc:bfr:banfra:523
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/working-paper_523_2014.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. Cunado, J. & Perez de Gracia, F., 2005. "Oil prices, economic activity and inflation: evidence for some Asian countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(1), pages 65-83, February.
    4. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
    5. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, Elsevier.
    6. Hooker, Mark A., 1996. "What happened to the oil price-macroeconomy relationship?," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 195-213, October.
    7. Lucas, Robert Jr., 1972. "Expectations and the neutrality of money," Journal of Economic Theory, Elsevier, vol. 4(2), pages 103-124, April.
    8. Russel Davidson & Andrea Monticini, 2014. "Heteroskedasticity-and-Autocorrelation-Consistent Bootstrapping," DISCE - Working Papers del Dipartimento di Economia e Finanza def012, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    9. Clarida, Richard & Gali, Jordi & Gertler, Mark, 1998. "Monetary policy rules in practice Some international evidence," European Economic Review, Elsevier, vol. 42(6), pages 1033-1067, June.
    10. repec:ctc:serie1:def12 is not listed on IDEAS
    11. Michael Bruno & Jeffrey Sachs, 1982. "Input Price Shocks and the Slowdown in Economic Growth: The Case of U.K.Manufacturing," NBER Working Papers 0851, National Bureau of Economic Research, Inc.
    12. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    14. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    15. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    16. Hooker, Mark A., 1996. "This is what happened to the oil price-macroeconomy relationship: Reply," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 221-222, October.
    17. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    18. Michael Bruno & Jeffrey Sachs, 1982. "Input Price Shocks and the Slowdown in Economic Growth: The Case of U.K. Manufacturing," Review of Economic Studies, Oxford University Press, vol. 49(5), pages 679-705.
    19. Hooker, Mark A, 2002. "Are Oil Shocks Inflationary? Asymmetric and Nonlinear Specifications versus Changes in Regime," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 540-561, May.
    20. Rotemberg, Julio J & Woodford, Michael, 1996. "Imperfect Competition and the Effects of Energy Price Increases on Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(4), pages 550-577, November.
    21. Edelstein, Paul & Kilian, Lutz, 2009. "How sensitive are consumer expenditures to retail energy prices?," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 766-779, September.
    22. Sargent, Thomas J & Wallace, Neil, 1975. ""Rational" Expectations, the Optimal Monetary Instrument, and the Optimal Money Supply Rule," Journal of Political Economy, University of Chicago Press, vol. 83(2), pages 241-254, April.
    23. Thomas Laurent & Tomasz Koźluk, 2012. "Measuring GDP Forecast Uncertainty Using Quantile Regressions," OECD Economics Department Working Papers 978, OECD Publishing.
    24. repec:ctc:serie1:def0012 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Forecast errors; Inflation rate; Oil price; Threshold model.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:523. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael brassart). General contact details of provider: http://edirc.repec.org/data/bdfgvfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.