IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.04935.html

Words Matter: Forecasting Economic Downside Risks with Corporate Textual Data

Author

Listed:
  • Cansu Isler

Abstract

Accurate forecasting of downside risks to economic growth is critically important for policymakers and financial institutions, particularly in the wake of recent economic crises. This paper extends the Growth-at-Risk (GaR) approach by introducing a novel daily sentiment indicator derived from textual analysis of mandatory corporate disclosures (SEC 10-K and 10-Q reports) to forecast downside risks to economic growth. Using the Loughran--McDonald dictionary and a word-count methodology, I compute firm-level tone growth as the year-over-year difference between positive and negative sentiment expressed in corporate filings. These firm-specific sentiment metrics are aggregated into a weekly tone index, weighted by firms' market capitalizations to capture broader, economy-wide sentiment dynamics. Integrated into a mixed-data sampling (MIDAS) quantile regression framework, this sentiment-based indicator enhances the prediction of GDP growth downturns, outperforming traditional financial market indicators such as the National Financial Conditions Index (NFCI). The findings underscore corporate textual data as a powerful and timely resource for macroeconomic risk assessment and informed policymaking.

Suggested Citation

  • Cansu Isler, 2025. "Words Matter: Forecasting Economic Downside Risks with Corporate Textual Data," Papers 2511.04935, arXiv.org.
  • Handle: RePEc:arx:papers:2511.04935
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.04935
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leland Bybee & Bryan T. Kelly & Asaf Manela & Dacheng Xiu, 2021. "Business News and Business Cycles," NBER Working Papers 29344, National Bureau of Economic Research, Inc.
    2. Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik & Jie Yu, 2022. "The Term Structure of Growth-at-Risk," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 283-323, July.
    3. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
    6. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    7. Mark Cecchini & Haldun Aytug & Gary J. Koehler & Praveen Pathak, 2010. "Detecting Management Fraud in Public Companies," Management Science, INFORMS, vol. 56(7), pages 1146-1160, July.
    8. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    9. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    10. Nerissa C. Brown & Richard M. Crowley & W. Brooke Elliott, 2020. "What Are You Saying? Using topic to Detect Financial Misreporting," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 58(1), pages 237-291, March.
    11. Mehran Azimi & Anup Agrawal, 2021. "Is Positive Sentiment in Corporate Annual Reports Informative? Evidence from Deep Learning [Cash holdings and credit risk]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 11(4), pages 762-805.
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schick, Manuel, 2024. "Real-time Nowcasting Growth-at-Risk using the Survey of Professional Forecasters," Working Papers 0750, University of Heidelberg, Department of Economics.
    2. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    3. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    4. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2024. "Nowcasting Norwegian household consumption with debit card transaction data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1220-1244, November.
    5. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    6. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    7. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    8. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    9. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    10. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    11. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    12. Gavriilidis, Konstantinos & Kallinterakis, Vasileios & Montone, Maurizio, 2024. "Political uncertainty and institutional herding," Journal of Corporate Finance, Elsevier, vol. 88(C).
    13. Nartea, Gilbert V. & Bai, Hengyu & Wu, Ji, 2020. "Investor sentiment and the economic policy uncertainty premium," Pacific-Basin Finance Journal, Elsevier, vol. 64(C).
    14. Aprigliano, Valentina & Emiliozzi, Simone & Guaitoli, Gabriele & Luciani, Andrea & Marcucci, Juri & Monteforte, Libero, 2023. "The power of text-based indicators in forecasting Italian economic activity," International Journal of Forecasting, Elsevier, vol. 39(2), pages 791-808.
    15. Chen, Sheng-Syan & Chen, Yan-Shing & Liang, Woan-lih & Wang, Yanzhi, 2020. "Public R&D spending and cross-sectional stock returns," Research Policy, Elsevier, vol. 49(1).
    16. Carolin Pflueger & Emil Siriwardane & Adi Sunderam, 2019. "Financial Market Risk Perceptions and the Macroeconomy," NBER Working Papers 26290, National Bureau of Economic Research, Inc.
    17. Markus Buxbaum & Wolfgang Schultze & Samuel L. Tiras, 2023. "Do analysts’ target prices stabilize the stock market?," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 763-816, October.
    18. Tibor Szendrei & Arnab Bhattacharjee & Mark E. Schaffer, 2024. "MIDAS-QR with 2-Dimensional Structure," Papers 2406.15157, arXiv.org.
    19. Lhuissier, Stéphane, 2022. "Financial conditions and macroeconomic downside risks in the euro area," European Economic Review, Elsevier, vol. 143(C).
    20. Simon Lloyd & Ed Manuel & Konstantin Panchev, 2024. "Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(1), pages 335-392, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.04935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.