IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v56y2010i7p1146-1160.html
   My bibliography  Save this article

Detecting Management Fraud in Public Companies

Author

Listed:
  • Mark Cecchini

    () (School of Accounting, Darla Moore School of Business, University of South Carolina, Columbia, South Carolina 29208)

  • Haldun Aytug

    () (Information Systems and Operations Management, Warrington College of Business Administration, University of Florida, Gainesville, Florida 32611)

  • Gary J. Koehler

    () (Information Systems and Operations Management, Warrington College of Business Administration, University of Florida, Gainesville, Florida 32611)

  • Praveen Pathak

    () (Information Systems and Operations Management, Warrington College of Business Administration, University of Florida, Gainesville, Florida 32611)

Abstract

This paper provides a methodology for detecting management fraud using basic financial data. The methodology is based on support vector machines. An important aspect therein is a kernel that increases the power of the learning machine by allowing an implicit and generally nonlinear mapping of points, usually into a higher dimensional feature space. A kernel specific to the domain of finance is developed. This financial kernel constructs features shown in prior research to be helpful in detecting management fraud. A large empirical data set was collected, which included quantitative financial attributes for fraudulent and nonfraudulent public companies. Support vector machines using the financial kernel correctly labeled 80% of the fraudulent cases and 90.6% of the nonfraudulent cases on a holdout set. Furthermore, we replicate other leading fraud research studies using our data and find that our method has the highest accuracy on fraudulent cases and competitive accuracy on nonfraudulent cases. The results validate the financial kernel together with support vector machines as a useful method for discriminating between fraudulent and nonfraudulent companies using only publicly available quantitative financial attributes. The results also show that the methodology has predictive value because, using only historical data, it was able to distinguish fraudulent from nonfraudulent companies in subsequent years.

Suggested Citation

  • Mark Cecchini & Haldun Aytug & Gary J. Koehler & Praveen Pathak, 2010. "Detecting Management Fraud in Public Companies," Management Science, INFORMS, vol. 56(7), pages 1146-1160, July.
  • Handle: RePEc:inm:ormnsc:v:56:y:2010:i:7:p:1146-1160
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1100.1174
    Download Restriction: no

    References listed on IDEAS

    as
    1. Francis, Jennifer & LaFond, Ryan & Olsson, Per & Schipper, Katherine, 2005. "The market pricing of accruals quality," Journal of Accounting and Economics, Elsevier, vol. 39(2), pages 295-327, June.
    2. J. V. Hansen & J. B. McDonald & W. F. Messier, Jr. & T. B. Bell, 1996. "A Generalized Qualitative-Response Model and the Analysis of Management Fraud," Management Science, INFORMS, vol. 42(7), pages 1022-1032, July.
    3. Cindy Durtschi & Peter Easton, 2005. "Earnings Management? The Shapes of the Frequency Distributions of Earnings Metrics Are Not Evidence Ipso Facto," Journal of Accounting Research, Wiley Blackwell, vol. 43(4), pages 557-592, September.
    4. Pincus, Karen V., 1989. "The efficacy of a red flags questionnaire for assessing the possibility of fraud," Accounting, Organizations and Society, Elsevier, vol. 14(1-2), pages 153-163, January.
    5. Srinivasan, Venkat & Kim, Yong H, 1987. " Credit Granting: A Comparative Analysis of Classification Procedures," Journal of Finance, American Finance Association, vol. 42(3), pages 665-681, July.
    6. Eisenbeis, Robert A, 1987. " Credit Granting: A Comparative Analysis of Classification Procedures: Discussion," Journal of Finance, American Finance Association, vol. 42(3), pages 681-683, July.
    7. Khan, Mozaffar & Watts, Ross L., 2009. "Estimation and empirical properties of a firm-year measure of accounting conservatism," Journal of Accounting and Economics, Elsevier, vol. 48(2-3), pages 132-150, December.
    8. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    9. Beneish, Messod D., 1997. "Detecting GAAP violation: implications for assessing earnings management among firms with extreme financial performance," Journal of Accounting and Public Policy, Elsevier, vol. 16(3), pages 271-309.
    10. William F. Messier, Jr. & James V. Hansen, 1988. "Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data," Management Science, INFORMS, vol. 34(12), pages 1403-1415, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:aosoci:v:57:y:2017:i:c:p:33-51 is not listed on IDEAS
    2. Madan Lal Bhasin, 2016. "Creative Accounting Practices at Satyam Computers Limited: A Case Study of India’s Enron," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(6), pages 24-48, June.
    3. Ion IVAN & Cristian CIUREA & Mihai DOINEA & Arthur AVRAMIEA, 2012. "Collaborative Management of Risks and Complexity in Banking Systems," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 16(2), pages 128-141.
    4. Tobias Karmann & René Mauer & Tessa C. Flatten & Malte Brettel, 2016. "Entrepreneurial Orientation and Corruption," Journal of Business Ethics, Springer, vol. 133(2), pages 223-234, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:56:y:2010:i:7:p:1146-1160. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.