IDEAS home Printed from https://ideas.repec.org/p/ags/saea18/266693.html
   My bibliography  Save this paper

Predicting Soybean Yield with NDVI using a Flexible Fourier Transform Model

Author

Listed:
  • Xu, Chang
  • Katchova, Ani

Abstract

We study how to incorporate the Normalized Difference Vegetation Index (NDVI) derived from remote sensing satellites to improve soybean yield predictions in ten major producing states in the United States. Unlike traditional methods which assume that a global OLS model applies to all observations, we account for geographical heterogeneity by using the Flexible Fourier Transform (FFT) model. Results show that there is considerable heterogeneity in how responsive soybean yield is to NDVI over the growing season. Out-of-sample cross-validation indicates that accounting for geographical heterogeneity improves the forecasts in terms of smaller prediction error compared to models assuming away geographical heterogeneity.

Suggested Citation

  • Xu, Chang & Katchova, Ani, 2018. "Predicting Soybean Yield with NDVI using a Flexible Fourier Transform Model," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266693, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saea18:266693
    DOI: 10.22004/ag.econ.266693
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/266693/files/SoybeanYieldNDVI.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/266693/files/SoybeanYieldNDVI.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.266693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Enders, Walter & Li, Jing, 2015. "Trend-cycle decomposition allowing for multiple smooth structural changes in the trend of US real GDP," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 71-81.
    2. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    3. Joshua Woodard, 2016. "Big data and Ag-Analytics: An open source, open data platform for agricultural & environmental finance, insurance, and risk," Agricultural Finance Review, Emerald Group Publishing, vol. 76(1), pages 15-26, May.
    4. Fenton, Victor M. & Gallant, A. Ronald, 1996. "Qualitative and asymptotic performance of SNP density estimators," Journal of Econometrics, Elsevier, vol. 74(1), pages 77-118, September.
    5. Kaul, Monisha & Hill, Robert L. & Walthall, Charles, 2005. "Artificial neural networks for corn and soybean yield prediction," Agricultural Systems, Elsevier, vol. 85(1), pages 1-18, July.
    6. A. Ronald Gallant, 1984. "The Fourier Flexible Form," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(2), pages 204-208.
    7. Irwin, Scott & Sanders, Dwight & Good, Darrel, 2014. "Evaluation of Selected USDA WAOB and NASS Forecasts and Estimates in Corn and Soybeans," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 4, January.
    8. Joseph Cooper & A. Nam Tran & Steven Wallander, 2017. "Testing for Specification Bias with a Flexible Fourier Transform Model for Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 800-817.
    9. Ralf Becker & Walter Enders & Junsoo Lee, 2006. "A Stationarity Test in the Presence of an Unknown Number of Smooth Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(3), pages 381-409, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bagliano, Fabio C. & Morana, Claudio, 2009. "International macroeconomic dynamics: A factor vector autoregressive approach," Economic Modelling, Elsevier, vol. 26(2), pages 432-444, March.
    2. Bagliano, Fabio C. & Morana, Claudio, 2012. "The Great Recession: US dynamics and spillovers to the world economy," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 1-13.
    3. Andrea Beltratti & Claudio Morana, 2008. "International shocks and national house prices," ICER Working Papers - Applied Mathematics Series 14-2008, ICER - International Centre for Economic Research.
    4. Yagmur Saglam & Apostolos Ampountolas, 2021. "The effects of shocks on Turkish tourism demand: Evidence using panel unit root test," Tourism Economics, , vol. 27(4), pages 859-866, June.
    5. Beltratti, Andrea & Morana, Claudio, 2010. "International house prices and macroeconomic fluctuations," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 533-545, March.
    6. Fabio C. Bagliano & Claudio Morana, 2011. "Macro-finance interactions in the US: A global perspective," Working papers 23, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    7. Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
    8. Cooper, Joseph C., 2002. "Flexible Functional Form Estimation of Willingness to Pay Using Dichotomous Choice Data," Journal of Environmental Economics and Management, Elsevier, vol. 43(2), pages 267-279, March.
    9. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    10. Wang, Juan & Zhang, Dongxiang & Zhang, Jian, 2015. "Mean reversion in stock prices of seven Asian stock markets: Unit root test and stationary test with Fourier functions," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 157-164.
    11. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
    12. Tolga Omay & Furkan Emirmahmutoğlu, 2017. "The Comparison of Power and Optimization Algorithms on Unit Root Testing with Smooth Transition," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 623-651, April.
    13. Cassola, Nuno & Morana, Claudio, 2010. "Comovements in volatility in the euro money market," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 525-539, April.
    14. Amado, Cristina & Teräsvirta, Timo, 2014. "Modelling changes in the unconditional variance of long stock return series," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
    15. Fabio Bagliano & Claudio Morana, 2010. "Business cycle comovement in the G-7: common shocks or common transmission mechanisms?," Applied Economics, Taylor & Francis Journals, vol. 42(18), pages 2327-2345.
    16. Stengos, Thanasis & Yazgan, M. Ege, 2014. "Persistence In Convergence," Macroeconomic Dynamics, Cambridge University Press, vol. 18(4), pages 753-782, June.
    17. Magdalena Osińska & Tadeusz Kufel & Marcin Błażejowski & Paweł Kufel, 2020. "Modeling mechanism of economic growth using threshold autoregression models," Empirical Economics, Springer, vol. 58(3), pages 1381-1430, March.
    18. Fabio C. Bagliano & Claudio Morana, 2011. "The Effects of the US Economic and Financial Crises on Euro Area Convergence," Chapters, in: Wim Meeusen (ed.), The Economic Crisis and European Integration, chapter 7, Edward Elgar Publishing.
    19. Alan King & Carlyn Ramlogan-Dobson, 2016. "Is there club convergence in Latin America?," Empirical Economics, Springer, vol. 51(3), pages 1011-1031, November.
    20. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea18:266693. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.