IDEAS home Printed from https://ideas.repec.org/p/ags/quedwp/274619.html
   My bibliography  Save this paper

Least Squares Model Averaging by Prediction Criterion

Author

Listed:
  • Xie, Tian

Abstract

This paper proposes a new estimator for least squares model averaging. A model average estimator is a weighted average of common estimates obtained from a set of models. We propose computing weights by minimizing a model average prediction criterion (MAPC). We prove that the MAPC estimator is asymptotically optimal in the sense of achieving the lowest possible mean squared error. For statistical inference, we derive asymptotic tests for single hypotheses and joint hypotheses on the average coefficients for the “core” regressors. These regressors are of primary interest to us and are included in every approximation model. To improve the finite sample performance, we also consider bootstrap tests. In simulation experiments the MAPC estimator is shown to have significant efficiency gains over existing model selection and model averaging methods. We also show that the bootstrap tests have more reasonable rejection frequency than the asymptotic tests in small samples. As an empirical illustration, we apply the MAPC estimator to cross-country economic growth models.

Suggested Citation

  • Xie, Tian, 2012. "Least Squares Model Averaging by Prediction Criterion," Queen's Economics Department Working Papers 274619, Queen's University - Department of Economics.
  • Handle: RePEc:ags:quedwp:274619
    DOI: 10.22004/ag.econ.274619
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/274619/files/qed_wp_1299.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.274619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:274619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.