IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1299.html
   My bibliography  Save this paper

Least Squares Model Averaging by Prediction Criterion

Author

Listed:
  • Tian Xie

    ()

Abstract

This paper proposes a new estimator for least squares model averaging. A model average estimator is a weighted average of common estimates obtained from a set of models. We propose computing weights by minimizing a model average prediction criterion (MAPC). We prove that the MAPC estimator is asymptotically optimal in the sense of achieving the lowest possible mean squared error. For statistical inference, we derive asymptotic tests for single hypotheses and joint hypotheses on the average coefficients for the "core" regressors. These regressors are of primary interest to us and are included in every approximation model. To improve the finite sample performance, we also consider bootstrap tests. In simulation experiments the MAPC estimator is shown to have significant efficiency gains over existing model selection and model averaging methods. We also show that the bootstrap tests have more reasonable rejection frequency than the asymptotic tests in small samples. As an empirical illustration, we apply the MAPC estimator to cross-country economic growth models.

Suggested Citation

  • Tian Xie, 2012. "Least Squares Model Averaging by Prediction Criterion," Working Papers 1299, Queen's University, Department of Economics.
  • Handle: RePEc:qed:wpaper:1299
    as

    Download full text from publisher

    File URL: http://qed.econ.queensu.ca/working_papers/papers/qed_wp_1299.pdf
    File Function: First version 2012
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    2. Pagan, Adrian, 1987. " Three Econometric Methodologies: A Critical Appraisal," Journal of Economic Surveys, Wiley Blackwell, vol. 1(1), pages 3-24.
    3. David F. Hendry & Bent Nielsen, 2007. "Preface to Econometric Modeling: A Likelihood Approach," Introductory Chapters,in: Econometric Modeling: A Likelihood Approach Princeton University Press.
    4. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 407-443.
    5. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    6. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    9. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    10. Hendry, David F., 1976. "The structure of simultaneous equations estimators," Journal of Econometrics, Elsevier, vol. 4(1), pages 51-88, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Model Averaging; MAPC; Convex Optimization; Optimality; Statistical Inference;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1299. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock). General contact details of provider: http://edirc.repec.org/data/qedquca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.