IDEAS home Printed from https://ideas.repec.org/p/ags/aesc14/170784.html
   My bibliography  Save this paper

Assessing uncertainty in the cost-effectiveness of agricultural greenhouse gas mitigation

Author

Listed:
  • Eory, Vera
  • Topp, Cairistiona F. E.
  • Moran, Dominic
  • Butler, Adam

Abstract

Information on the uncertainty of quantitative results feeding into public decision making is essential for designing robust policies. However, this information is often not available in relation to the economics of greenhouse gas (GHG) mitigation in agriculture. This paper analyses the uncertainty of the mitigation estimates provided by a Marginal Abatement Cost Curve (MACC). The case study is based on the GHG MACC developed for Scottish agricultural soils. The qualitative assessment disentangled the different sources and types of uncertainty in the cost-effectiveness analysis of GHG mitigation options. The quantitative assessment estimated the statistical uncertainty of the results by propagating uncertainty through the model, using three uncertainty scenarios. The results show that the uncertainty in the economically optimal abatement in Scottish agricultural soils is high with the medium and high uncertainty scenarios, with the ratio of the 95% CI to the mean being 0.57-1.01 and 0.98-1.4, respectively, while the low uncertainty scenario resulting in a ratio of the 95% CI to the mean of 0.24-0.68. However, the ranking of the measures are relatively robust with all three uncertainty scenarios, especially in terms of which options have cost-effectiveness below the carbon price threshold.

Suggested Citation

  • Eory, Vera & Topp, Cairistiona F. E. & Moran, Dominic & Butler, Adam, 2014. "Assessing uncertainty in the cost-effectiveness of agricultural greenhouse gas mitigation," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 170784, Agricultural Economics Society.
  • Handle: RePEc:ags:aesc14:170784
    DOI: 10.22004/ag.econ.170784
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/170784/files/Vera_Eory_Eoryetal_full.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.170784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Syster C. Maart-Noelck & Oliver Musshoff, 2013. "Investing Today or Tomorrow? An Experimental Approach to Farmers’ Decision Behaviour," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(2), pages 295-318, June.
    2. Peterson, Sonja, 2006. "Uncertainty and economic analysis of climate change: a survey of approaches and findings," Open Access Publications from Kiel Institute for the World Economy 3778, Kiel Institute for the World Economy (IfW Kiel).
    3. Meyer-Aurich, Andreas & Schattauer, Alexander & Hellebrand, Hans Jürgen & Klauss, Hilde & Plöchl, Matthias & Berg, Werner, 2012. "Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources," Renewable Energy, Elsevier, vol. 37(1), pages 277-284.
    4. Hallegatte, Stephane & Shah, Ankur & Lempert, Robert & Brown, Casey & Gill, Stuart, 2012. "Investment decision making under deep uncertainty -- application to climate change," Policy Research Working Paper Series 6193, The World Bank.
    5. Moran, Dominic & MacLeod, Michael J. & Wall, Eileen & Eory, Vera & McVittie, Alistair & Barnes, Andrew Peter & Rees, Bob & Smith, Peter & Moxey, Andrew, 2009. "Marginal abatement cost curves for UK agriculture, forestry, land-use and land-use change sector out to 2022," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51065, Agricultural Economics Society.
    6. Price, Richard & Thornton, Simeon & Nelson, Stephen, 2007. "The Social Cost of Carbon and the Shadow Price of Carbon: what they are, and how to use them in economic appraisal in the UK," MPRA Paper 74976, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mykola Gusti & Nicklas Forsell & Petr Havlik & Nikolay Khabarov & Florian Kraxner & Michael Obersteiner, 2019. "The sensitivity of the costs of reducing emissions from deforestation and degradation (REDD) to future socioeconomic drivers and its implications for mitigation policy design," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1123-1141, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera Eory & Cairistiona F. E. Topp & Adam Butler & Dominic Moran, 2018. "Addressing Uncertainty in Efficient Mitigation of Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 627-645, September.
    2. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    3. Eory, Vera & Topp, Cairistiona F. E. & Butler, Adam & Bond, Clare E., 2018. "Experts’ estimates of future uptake of low-carbon agricultural practices," 92nd Annual Conference, April 16-18, 2018, Warwick University, Coventry, UK 273483, Agricultural Economics Society.
    4. Kalra, Nidhi & Hallegatte, Stephane & Lempert, Robert & Brown, Casey & Fozzard, Adrian & Gill, Stuart & Shah, Ankur, 2014. "Agreeing on robust decisions : new processes for decision making under deep uncertainty," Policy Research Working Paper Series 6906, The World Bank.
    5. Wreford, Anita & Topp, Cairistiona F.E., 2020. "Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom," Agricultural Systems, Elsevier, vol. 178(C).
    6. Martina Linnenluecke & Andrew Griffiths & Peter Mumby, 2015. "Executives’ engagement with climate science and perceived need for business adaptation to climate change," Climatic Change, Springer, vol. 131(2), pages 321-333, July.
    7. Annika Styczynski & Jedamiah Wolf & Somdatta Tah & Arnab Bose, 2014. "When decision-making processes fail: an argument for robust climate adaptation planning in the face of uncertainty," Environment Systems and Decisions, Springer, vol. 34(4), pages 478-491, December.
    8. Li, Xin, 2016. "The Farmland Valuation Revisited," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 4(2), pages 1-14, April.
    9. Abdul Tariq & Robert Jay Lempert & John Riverson & Marla Schwartz & Neil Berg, 2017. "A climate stress test of Los Angeles’ water quality plans," Climatic Change, Springer, vol. 144(4), pages 625-639, October.
    10. Pérez Domínguez, Ignacio & Britz, Wolfgang & Holm-Müller, Karin, 2009. "Trading schemes for greenhouse gas emissions from European agriculture: A comparative analysis based on different implementation options," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 90(3).
    11. Innocent Bakam & Robin Matthews, 2009. "Emission trading in agriculture: a study of design options using an agent-based approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 755-776, December.
    12. Lempert Robert J., 2014. "Embedding (some) benefit-cost concepts into decision support processes with deep uncertainty," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 487-514, December.
    13. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    14. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    15. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    16. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    17. Dörschner, T. & Musshoff, O., 2015. "How do incentive-based environmental policies affect environment protection initiatives of farmers? An experimental economic analysis using the example of species richness," Ecological Economics, Elsevier, vol. 114(C), pages 90-103.
    18. Marta Szyba & Jerzy Mikulik, 2022. "Energy Production from Biodegradable Waste as an Example of the Circular Economy," Energies, MDPI, vol. 15(4), pages 1-16, February.
    19. Stephen C. Newbold & Charles Griffiths & Chris Moore & Ann Wolverton & Elizabeth Kopits, 2013. "A Rapid Assessment Model For Understanding The Social Cost Of Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-40.
    20. Bethany Robinson & Jonathan D. Herman, 2019. "A framework for testing dynamic classification of vulnerable scenarios in ensemble water supply projections," Climatic Change, Springer, vol. 152(3), pages 431-448, March.

    More about this item

    Keywords

    Environmental Economics and Policy; Risk and Uncertainty;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc14:170784. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.