IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i6p1867-1883.html
   My bibliography  Save this article

Forecasting Carbon Prices: What Is the Role of Technology?

Author

Listed:
  • Ali Ben Mrad
  • Amine Lahiani
  • Salma Mefteh‐Wali
  • Nada Mselmi

Abstract

We examine the role of the technology in predicting carbon prices using a large set of machine learning models. The predictors are selected from technological, environmental, financial, energy, and geopolitical aspects. Our sample covers the daily period from August 1, 2014, to March 4, 2024. We find that technology factors (Information Technology Index, AEX Technology Index, and Tech All Share Index) significantly improve the prediction accuracy of carbon prices, both when included in the prediction model individually and simultaneously. Furthermore, the Diebold–Mariano and Clark–West tests highly reject the null of equal predictive accuracy between the technology model and the baseline model (without technology variables). Moreover, results show that XGBoost outperforms the alternative machine learning models for all forecasting horizons (1, 5, 22, and 250 days). We present significant policy implications useful for investors, companies, and policymakers.

Suggested Citation

  • Ali Ben Mrad & Amine Lahiani & Salma Mefteh‐Wali & Nada Mselmi, 2025. "Forecasting Carbon Prices: What Is the Role of Technology?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(6), pages 1867-1883, September.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:6:p:1867-1883
    DOI: 10.1002/for.3275
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3275
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keppler, Jan Horst & Mansanet-Bataller, Maria, 2010. "Causalities between CO2, electricity, and other energy variables during phase I and phase II of the EU ETS," Energy Policy, Elsevier, vol. 38(7), pages 3329-3341, July.
    2. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sousa, Ricardo M., 2014. "Energy prices and CO2 emission allowance prices: A quantile regression approach," Energy Policy, Elsevier, vol. 70(C), pages 201-206.
    3. Koch, Nicolas & Fuss, Sabine & Grosjean, Godefroy & Edenhofer, Ottmar, 2014. "Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence," Energy Policy, Elsevier, vol. 73(C), pages 676-685.
    4. Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong & Sousa, Ricardo M., 2015. "An empirical analysis of energy cost pass-through to CO2 emission prices," Energy Economics, Elsevier, vol. 49(C), pages 149-156.
    5. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    6. Adediran, Idris A. & Swaray, Raymond, 2023. "Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty," Economic Modelling, Elsevier, vol. 123(C).
    7. Galimberti, Jaqueson K. & Moura, Marcelo L., 2013. "Taylor rules and exchange rate predictability in emerging economies," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1008-1031.
    8. Rickels Wilfried & Görlich Dennis & Peterson Sonja, 2015. "Explaining European Emission Allowance Price Dynamics: Evidence from Phase II," German Economic Review, De Gruyter, vol. 16(2), pages 181-202, May.
    9. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    10. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    11. Zhen-Hua Feng & Chun-Feng Liu & Yi-Ming Wei, 2011. "How does carbon price change? Evidences from EU ETS," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(2/3/4), pages 132-144.
    12. Wen, Fenghua & Zhao, Lili & He, Shaoyi & Yang, Guozheng, 2020. "Asymmetric relationship between carbon emission trading market and stock market: Evidences from China," Energy Economics, Elsevier, vol. 91(C).
    13. Zhang, Fang & Xia, Yan, 2022. "Carbon price prediction models based on online news information analytics," Finance Research Letters, Elsevier, vol. 46(PA).
    14. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2021. "The effect of carbon pricing on technological change for full energy decarbonization: A review of empirical ex‐post evidence," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    15. Wen, Fenghua & Zhao, Haocen & Zhao, Lili & Yin, Hua, 2022. "What drive carbon price dynamics in China?," International Review of Financial Analysis, Elsevier, vol. 79(C).
    16. repec:dau:papers:123456789/5269 is not listed on IDEAS
    17. Lei Jin & Keran Duan & Chunming Shi & Xianwei Ju, 2017. "The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China," IJERPH, MDPI, vol. 14(12), pages 1-14, December.
    18. Nikolsko-Rzhevskyy, Alex & Prodan, Ruxandra, 2012. "Markov switching and exchange rate predictability," International Journal of Forecasting, Elsevier, vol. 28(2), pages 353-365.
    19. Moreno, Blanca & Pereira da Silva, Patrícia, 2016. "How do Spanish polluting sectors' stock market returns react to European Union allowances prices? A panel data approach," Energy, Elsevier, vol. 103(C), pages 240-250.
    20. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    21. Qian, Lihua & Zeng, Qing & Li, Tao, 2022. "Geopolitical risk and oil price volatility: Evidence from Markov-switching model," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 29-38.
    22. Chenhao Fang & Tieju Ma, 2021. "Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price," Annals of Operations Research, Springer, vol. 300(2), pages 577-600, May.
    23. Zhang, Wei & Li, Guoxiang & Guo, Fanyong, 2022. "Does carbon emissions trading promote green technology innovation in China?," Applied Energy, Elsevier, vol. 315(C).
    24. Oberndorfer, Ulrich, 2009. "EU Emission Allowances and the stock market: Evidence from the electricity industry," Ecological Economics, Elsevier, vol. 68(4), pages 1116-1126, February.
    25. Liu, Hsiang-Hsi & Chen, Yi-Chun, 2013. "A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: The impacts of extreme weather," Economic Modelling, Elsevier, vol. 35(C), pages 840-855.
    26. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    27. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    28. Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
    29. Adams, Samuel & Adedoyin, Festus & Olaniran, Eniola & Bekun, Festus Victor, 2020. "Energy consumption, economic policy uncertainty and carbon emissions; causality evidence from resource rich economies," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 179-190.
    30. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Li, Zheng & Su, Chi-Wei & Umar, Muhammad & Shao, Xuefeng, 2022. "Exploring the asymmetric impact of economic policy uncertainty on China's carbon emissions trading market price: Do different types of uncertainty matter?," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    2. Wen, Fenghua & Zhao, Haocen & Zhao, Lili & Yin, Hua, 2022. "What drive carbon price dynamics in China?," International Review of Financial Analysis, Elsevier, vol. 79(C).
    3. Pilar Gargallo & Luis Lample & Jesús A. Miguel & Manuel Salvador, 2021. "Co-Movements between Eu Ets and the Energy Markets: A Var-Dcc-Garch Approach," Mathematics, MDPI, vol. 9(15), pages 1-36, July.
    4. Yi Yao & Lixin Tian & Guangxi Cao, 2022. "The Information Spillover among the Carbon Market, Energy Market, and Stock Market: A Case Study of China’s Pilot Carbon Markets," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    5. Wu, Ruirui & Qin, Zhongfeng & Liu, Bing-Yue, 2022. "A systemic analysis of dynamic frequency spillovers among carbon emissions trading (CET), fossil energy and sectoral stock markets: Evidence from China," Energy, Elsevier, vol. 254(PA).
    6. Xiaoqing Wang & Wenxin Jin & Baochang Xu & Kaihua Wang, 2025. "Volatility in Carbon Futures Amid Uncertainties: Considering Geopolitical and Economic Policy Factors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(4), pages 308-325, April.
    7. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    8. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Noman, Ambreen, 2021. "The volatility connectedness of the EU carbon market with commodity and financial markets in time- and frequency-domain: The role of the U.S. economic policy uncertainty," Resources Policy, Elsevier, vol. 74(C).
    9. Gargallo, Pilar & Lample, Luis & Miguel, Jesús A. & Salvador, Manuel, 2024. "Sequential management of energy and low-carbon portfolios," Research in International Business and Finance, Elsevier, vol. 69(C).
    10. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    11. Chun Jiang & Yi-Fan Wu & Xiao-Lin Li & Xin Li, 2020. "Time-frequency Connectedness between Coal Market Prices, New Energy Stock Prices and CO 2 Emissions Trading Prices in China," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    12. Man, Yuanyuan & Zhang, Sunpei & He, Yongda, 2024. "Dynamic risk spillover and hedging efficacy of China’s carbon-energy-finance markets: Economic policy uncertainty and investor sentiment non-linear causal effects," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1397-1416.
    13. Joao Leitao & Joaquim Ferreira & Ernesto Santibanez‐Gonzalez, 2021. "Green bonds, sustainable development and environmental policy in the European Union carbon market," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 2077-2090, May.
    14. Wang, Jiqian & Guo, Xiaozhu & Tan, Xueping & Chevallier, Julien & Ma, Feng, 2023. "Which exogenous driver is informative in forecasting European carbon volatility: Bond, commodity, stock or uncertainty?," Energy Economics, Elsevier, vol. 117(C).
    15. Maneejuk, Paravee & Huang, Wucaihong & Yamaka, Woraphon, 2025. "Asymmetric volatility spillover effects from energy, agriculture, green bond, and financial market uncertainty on carbon market during major market crisis," Energy Economics, Elsevier, vol. 145(C).
    16. Li, Zheng-Zheng & Li, Yameng & Huang, Chia-Yun & Peculea, Adelina Dumitrescu, 2023. "Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method," Energy Economics, Elsevier, vol. 119(C).
    17. Li, Houjian & Li, Qingman & Huang, Xinya & Guo, Lili, 2023. "Do green bonds and economic policy uncertainty matter for carbon price? New insights from a TVP-VAR framework," International Review of Financial Analysis, Elsevier, vol. 86(C).
    18. Zhao, Lili & Wen, Fenghua & Wang, Xiong, 2020. "Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect," Energy Economics, Elsevier, vol. 91(C).
    19. Jiménez-Rodríguez, Rebeca, 2019. "What happens to the relationship between EU allowances prices and stock market indices in Europe?," Energy Economics, Elsevier, vol. 81(C), pages 13-24.
    20. Jiang, Wei & Hu, Yanhui & Zhao, Xiangyu, 2025. "The impact of artificial intelligence on carbon market in China: Evidence from quantile-on-quantile regression approach," Technological Forecasting and Social Change, Elsevier, vol. 212(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:6:p:1867-1883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.