Carbon price prediction models based on online news information analytics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2022.102809
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Keppler, Jan Horst & Mansanet-Bataller, Maria, 2010. "Causalities between CO2, electricity, and other energy variables during phase I and phase II of the EU ETS," Energy Policy, Elsevier, vol. 38(7), pages 3329-3341, July.
- Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
- Broadstock, David C. & Zhang, Dayong, 2019. "Social-media and intraday stock returns: The pricing power of sentiment," Finance Research Letters, Elsevier, vol. 30(C), pages 116-123.
- Sun, Wei & Huang, Chenchen, 2020. "A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network," Energy, Elsevier, vol. 207(C).
- Fronzetti Colladon, Andrea, 2020. "Forecasting election results by studying brand importance in online news," International Journal of Forecasting, Elsevier, vol. 36(2), pages 414-427.
- Hintermann, Beat, 2010.
"Allowance price drivers in the first phase of the EU ETS,"
Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
- Beat Hintermann, 2009. "Allowance Price Drivers in the First Phase of the EU ETS," CEPE Working paper series 09-63, CEPE Center for Energy Policy and Economics, ETH Zurich.
- Wen, Fenghua & Zhao, Lili & He, Shaoyi & Yang, Guozheng, 2020. "Asymmetric relationship between carbon emission trading market and stock market: Evidences from China," Energy Economics, Elsevier, vol. 91(C).
- Wen, Fenghua & Zhao, Haocen & Zhao, Lili & Yin, Hua, 2022. "What drive carbon price dynamics in China?," International Review of Financial Analysis, Elsevier, vol. 79(C).
- repec:dau:papers:123456789/5269 is not listed on IDEAS
- Batten, Jonathan A. & Maddox, Grace E. & Young, Martin R., 2021. "Does weather, or energy prices, affect carbon prices?," Energy Economics, Elsevier, vol. 96(C).
- Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
- Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
- Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Ye, Jing & Xue, Minggao, 2021. "Influences of sentiment from news articles on EU carbon prices," Energy Economics, Elsevier, vol. 101(C).
- Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
- Liu, Zhibin & Huang, Shan, 2021. "Carbon option price forecasting based on modified fractional Brownian motion optimized by GARCH model in carbon emission trading," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenjie Xu & Jujie Wang & Yue Zhang & Jianping Li & Lu Wei, 2025. "An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction," Annals of Operations Research, Springer, vol. 345(2), pages 1229-1266, February.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Zeng, Liling & Hu, Huanling & Song, Qingkui & Zhang, Boting & Lin, Ruibin & Zhang, Dabin, 2024. "A drift-aware dynamic ensemble model with two-stage member selection for carbon price forecasting," Energy, Elsevier, vol. 313(C).
- Peng Ye & Yong Li & Abu Bakkar Siddik, 2023. "Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm," Energies, MDPI, vol. 16(11), pages 1-39, June.
- Chao Cao & Ziyu Li & Lingzhi Li & Fanglu Luo, 2025. "Research on the evolution of college online public opinion risk based on improved Grey Wolf Optimizer combined with LSTM model," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-20, January.
- Hartvig, Áron Dénes & Pap, Áron & Pálos, Péter, 2023. "EU Climate Change News Index: Forecasting EU ETS prices with online news," Finance Research Letters, Elsevier, vol. 54(C).
- Bangzhu Zhu & Chunzhuo Wan & Ping Wang & Julien Chevallier, 2025. "Interval Forecasting of Carbon Price With a Novel Hybrid Multiscale Decomposition and Bootstrap Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 376-390, March.
- Wang, Jujie & Xu, Shulian & Shu, Shuqin, 2024. "An optimal weight heterogeneous integrated carbon price prediction model based on temporal information extraction and specific comprehensive feature selection," Energy, Elsevier, vol. 312(C).
- Guangyu Mu & Jiaxue Li & Zehan Liao & Ziye Yang, 2024. "An Enhanced IHHO-LSTM Model for Predicting Online Public Opinion Trends in Public Health Emergencies," SAGE Open, , vol. 14(2), pages 21582440241, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Po Yun & Chen Zhang & Yaqi Wu & Yu Yang, 2022. "Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
- Liu, Shuihan & Li, Mingchen & Yang, Kun & Wei, Yunjie & Wang, Shouyang, 2025. "From forecasting to trading: A multimodal-data-driven approach to reversing carbon market losses," Energy Economics, Elsevier, vol. 144(C).
- Yumin Li & Ruiqi Yang & Xiaoman Wang & Jiaming Zhu & Nan Song, 2023. "Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
- Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
- Cao, Jin-Hui & Xie, Chi & Zhou, Yang & Wang, Gang-Jin & Zhu, You, 2025. "Forecasting carbon price: A novel multi-factor spatial-temporal GNN framework integrating Graph WaveNet and self-attention mechanism," Energy Economics, Elsevier, vol. 144(C).
- Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
- Dinggao Liu & Liuqing Wang & Shuo Lin & Zhenpeng Tang, 2025. "A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data," Mathematics, MDPI, vol. 13(3), pages 1-23, January.
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
- Wang, Jujie & Xu, Shulian & Shu, Shuqin, 2024. "An optimal weight heterogeneous integrated carbon price prediction model based on temporal information extraction and specific comprehensive feature selection," Energy, Elsevier, vol. 312(C).
- Weibao Sun & Yafang Gao & Xuemei Yang & Yalong Zhang & Haolin Hu, 2025. "Carbon Price Forecasting and Market Characteristics Analysis in China: An Integrated Approach Using Overall and Market-Specific Models," Sustainability, MDPI, vol. 17(12), pages 1-25, June.
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Yi Yao & Lixin Tian & Guangxi Cao, 2022. "The Information Spillover among the Carbon Market, Energy Market, and Stock Market: A Case Study of China’s Pilot Carbon Markets," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
- Zhu, Bangzhu & Yuan, Lili & Ye, Shunxin, 2019. "Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 392-399.
- Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
- Li, Xin & Li, Zheng & Su, Chi-Wei & Umar, Muhammad & Shao, Xuefeng, 2022. "Exploring the asymmetric impact of economic policy uncertainty on China's carbon emissions trading market price: Do different types of uncertainty matter?," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
- Su, Chi Wei & Wei, Shenkai & Wang, Yan & Tao, Ran, 2024. "How does climate policy uncertainty affect the carbon market?," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
More about this item
Keywords
Carbon price prediction; Online news; Google trend; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:46:y:2022:i:pa:s1544612322001143. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.