IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-022-04858-2.html
   My bibliography  Save this article

An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction

Author

Listed:
  • Wenjie Xu

    (Nanjing University of Information Science and Technology)

  • Jujie Wang

    (Nanjing University of Information Science and Technology)

  • Yue Zhang

    (Nanjing University of Information Science and Technology)

  • Jianping Li

    (University of Chinese Academy of Sciences)

  • Lu Wei

    (Central University of Finance and Economics)

Abstract

The carbon trading market is an effective tool to combat greenhouse gas emissions, and as the core issue of carbon market, carbon price can stimulate the market for technological innovation and industrial transformation. However, the complex characteristics of carbon price such as nonlinearity and nonstationarity bring great challenges to carbon price prediction research. In this study, potential influencing factors of carbon price are introduced into carbon price forecasting, and a novel hybrid carbon price forecasting framework is developed, which contains data decomposition and reconstruction techniques, two-stage feature dimension reduction methods, intelligent and optimized deep learning forecasting with nonlinear integrated models and interval forecasting. Firstly, the carbon price series is decomposed into several simple and smooth subsequences using variational modal decomposition. The stacked autoencoder is then used to extract its effective features and reconstruct them into several new subsequences. A two-stage feature dimension reduction method is utilized for feature selection and extraction of exogenous variables. A bidirectional long and short-term memory model optimized based on the cuckoo search algorithm was used for prediction and nonlinear integration. Finally, Gaussian process regression based on a hybrid kernel function is applied to carbon price interval forecasting. The validity of the model was verified on seven real carbon trading pilot datasets in China. The methodology outperforms all benchmark models in the final simulation results, providing a novel and efficient forecasting method for the carbon trading industry.

Suggested Citation

  • Wenjie Xu & Jujie Wang & Yue Zhang & Jianping Li & Lu Wei, 2025. "An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction," Annals of Operations Research, Springer, vol. 345(2), pages 1229-1266, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-022-04858-2
    DOI: 10.1007/s10479-022-04858-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04858-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04858-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Wei & Liu, Qingfu & Luo, Zhidan & Tse, Yiuman, 2022. "Forecasts for international financial series with VMD algorithms," Journal of Asian Economics, Elsevier, vol. 80(C).
    2. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    3. Beat Hintermann & Sonja Peterson & Wilfried Rickels, 2016. "Price and Market Behavior in Phase II of the EU ETS: A Review of the Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 108-128.
    4. Matthias Bank & Martin Larch & Georg Peter, 2011. "Google search volume and its influence on liquidity and returns of German stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(3), pages 239-264, September.
    5. Zhang, Fang & Xia, Yan, 2022. "Carbon price prediction models based on online news information analytics," Finance Research Letters, Elsevier, vol. 46(PA).
    6. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yiming Wei, 2015. "Carbon Price Analysis Using Empirical Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 195-206, February.
    7. Jin, Huaiping & Shi, Lixian & Chen, Xiangguang & Qian, Bin & Yang, Biao & Jin, Huaikang, 2021. "Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models," Renewable Energy, Elsevier, vol. 174(C), pages 1-18.
    8. Manrui Jiang & Lifen Jia & Zhensong Chen & Wei Chen, 2022. "The two-stage machine learning ensemble models for stock price prediction by combining mode decomposition, extreme learning machine and improved harmony search algorithm," Annals of Operations Research, Springer, vol. 309(2), pages 553-585, February.
    9. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    10. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    11. Dutta, Anupam & Bouri, Elie & Noor, Md Hasib, 2018. "Return and volatility linkages between CO2 emission and clean energy stock prices," Energy, Elsevier, vol. 164(C), pages 803-810.
    12. Wang, Jujie & Xu, Wenjie & Zhang, Yue & Dong, Jian, 2022. "A novel air quality prediction and early warning system based on combined model of optimal feature extraction and intelligent optimization," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    14. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    15. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Post-Print halshs-04250221, HAL.
    16. Xiaolei Sun & Jun Hao & Jianping Li, 2022. "Multi-objective optimization of crude oil-supply portfolio based on interval prediction data," Annals of Operations Research, Springer, vol. 309(2), pages 611-639, February.
    17. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    18. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Annals of Operations Research, Springer, vol. 281(1), pages 373-395, October.
    19. Khodayar, Mahdi & Saffari, Mohsen & Williams, Michael & Jalali, Seyed Mohammad Jafar, 2022. "Interval deep learning architecture with rough pattern recognition and fuzzy inference for short-term wind speed forecasting," Energy, Elsevier, vol. 254(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    2. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    3. Peng Ye & Yong Li & Abu Bakkar Siddik, 2023. "Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm," Energies, MDPI, vol. 16(11), pages 1-39, June.
    4. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    5. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    6. Yang, Kun & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Forecasting interval carbon price through a multi-scale interval-valued decomposition ensemble approach," Energy Economics, Elsevier, vol. 139(C).
    7. Wang, Jujie & Zhuang, Zhenzhen & Gao, Dongming, 2023. "An enhanced hybrid model based on multiple influencing factors and divide-conquer strategy for carbon price prediction," Omega, Elsevier, vol. 120(C).
    8. Shanglei Chai & Zixuan Zhang & Zhen Zhang, 2025. "Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine," Annals of Operations Research, Springer, vol. 345(2), pages 809-830, February.
    9. Canran Xiao & Yongmei Liu, 2025. "A Multifrequency Data Fusion Deep Learning Model for Carbon Price Prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 436-458, March.
    10. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    11. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    12. Jianguo Zhou & Shiguo Wang, 2021. "A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors," Energies, MDPI, vol. 14(5), pages 1-20, March.
    13. Yin, Hao & Yin, Yiding & Li, Hanhong & Zhu, Jianbin & Xian, Zikang & Tang, Yanshu & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhang, Haitao & Xie, Zhifeng & Meng, Anbo, 2025. "Carbon emissions trading price forecasting based on temporal-spatial multidimensional collaborative attention network and segment imbalance regression," Applied Energy, Elsevier, vol. 377(PA).
    14. Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
    15. Zhehao Huang & Benhuan Nie & Yuqiao Lan & Changhong Zhang, 2025. "A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods," Mathematics, MDPI, vol. 13(3), pages 1-31, January.
    16. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    17. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    18. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    19. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    20. Xingmin Zhang & Zhiyong Li & Yiming Zhao & Lan Wang, 2025. "Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting," Annals of Operations Research, Springer, vol. 345(2), pages 1267-1295, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-022-04858-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.