IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311749.html
   My bibliography  Save this article

Research on the evolution of college online public opinion risk based on improved Grey Wolf Optimizer combined with LSTM model

Author

Listed:
  • Chao Cao
  • Ziyu Li
  • Lingzhi Li
  • Fanglu Luo

Abstract

Since the dissemination of information is more rapid and the scale of users on online platforms is enormous, the public opinion risk is more visible and harder to tackle for universities and authorities. Improving the accuracy of predictions regarding online public opinion crises, especially those related to campuses, is crucial for maintaining social stability. This research proposes a public opinion crisis prediction model that applies the Grey Wolf Optimizer (GWO) algorithm combined with long short-term memory (LSTM) and implements it to analyze a trending topic on Sina Weibo to validate its prediction accuracy. A full-chain analytical framework for online public opinion prediction is established in this study, which enables the model to illustrate the level of risk related to public opinion and its variation trend by introducing the public opinion risk index. The prediction accuracy of the model is validated through several evaluation criteria, and a comparison between real and predicted results, and the simulation of the intervention on this incident indicates that the proposed model is competent for both trend prediction and assisting in intervention. The study also demonstrates the importance of immediate response and intervention to public opinion crises.

Suggested Citation

  • Chao Cao & Ziyu Li & Lingzhi Li & Fanglu Luo, 2025. "Research on the evolution of college online public opinion risk based on improved Grey Wolf Optimizer combined with LSTM model," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0311749
    DOI: 10.1371/journal.pone.0311749
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311749
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311749&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Fang & Xia, Yan, 2022. "Carbon price prediction models based on online news information analytics," Finance Research Letters, Elsevier, vol. 46(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    2. Guangyu Mu & Jiaxue Li & Zehan Liao & Ziye Yang, 2024. "An Enhanced IHHO-LSTM Model for Predicting Online Public Opinion Trends in Public Health Emergencies," SAGE Open, , vol. 14(2), pages 21582440241, June.
    3. Peng Ye & Yong Li & Abu Bakkar Siddik, 2023. "Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm," Energies, MDPI, vol. 16(11), pages 1-39, June.
    4. Hartvig, Áron Dénes & Pap, Áron & Pálos, Péter, 2023. "EU Climate Change News Index: Forecasting EU ETS prices with online news," Finance Research Letters, Elsevier, vol. 54(C).
    5. Wang, Jujie & Xu, Shulian & Shu, Shuqin, 2024. "An optimal weight heterogeneous integrated carbon price prediction model based on temporal information extraction and specific comprehensive feature selection," Energy, Elsevier, vol. 312(C).
    6. Wenjie Xu & Jujie Wang & Yue Zhang & Jianping Li & Lu Wei, 2025. "An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction," Annals of Operations Research, Springer, vol. 345(2), pages 1229-1266, February.
    7. Bangzhu Zhu & Chunzhuo Wan & Ping Wang & Julien Chevallier, 2025. "Interval Forecasting of Carbon Price With a Novel Hybrid Multiscale Decomposition and Bootstrap Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 376-390, March.
    8. Zeng, Liling & Hu, Huanling & Song, Qingkui & Zhang, Boting & Lin, Ruibin & Zhang, Dabin, 2024. "A drift-aware dynamic ensemble model with two-stage member selection for carbon price forecasting," Energy, Elsevier, vol. 313(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.