IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v3y2003i4p306-319.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Risk trading, network topology and banking regulation

Author

Listed:
  • Stefan Thurner
  • Rudolf Hanel
  • Stefan Pichler

Abstract

In the context of understanding the nature of the risk transformation process of the financial system we propose an iterative risk-trading game between several agents who build their trading strategies based on a general utility setting. The game is studied numerically for different network topologies. Consequences of topology are shown for the wealth time-series of agents, for the safety and efficiency of various types of network. The proposed set-up allows an analysis of the effects of different approaches to banking regulation as currently suggested by the Basle Committee of Banking Supervision. We find a phase-transition-like phenomenon, where the Basle parameter plays the role of temperature and system safety serves as the order parameter. This result suggests the existence of an optimal regulation parameter. As a consequence, a tightening of the current regulatory framework does not necessarily lead to an improvement of the safety of the banking system. Moreover, we show that banking systems with local risk-sharing cooperations have higher global default rates than systems with low cyclicality.

Suggested Citation

  • Stefan Thurner & Rudolf Hanel & Stefan Pichler, 2003. "Risk trading, network topology and banking regulation," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 306-319.
  • Handle: RePEc:taf:quantf:v:3:y:2003:i:4:p:306-319
    DOI: 10.1088/1469-7688/3/4/307
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1088/1469-7688/3/4/307
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1088/1469-7688/3/4/307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suijs, J.P.M. & De Waegenaere, A.M.B. & Borm, P.E.M., 1996. "Stochastic Cooperative Games in Insurance and Reinsurance," Other publications TiSEM f2cd7428-cd39-4462-af76-2, Tilburg University, School of Economics and Management.
    2. Christian Gollier, 1996. "Repeated Optional Gambles and Risk Aversion," Management Science, INFORMS, vol. 42(11), pages 1524-1530, November.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    5. Lohmann, Susanne & Hopenhayn, Hugo, 1998. "Delegation and the Regulation of Risk," Games and Economic Behavior, Elsevier, vol. 23(2), pages 222-246, May.
    6. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    7. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    8. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    9. Suijs, Jeroen & De Waegenaere, Anja & Borm, Peter, 1998. "Stochastic cooperative games in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 209-228, July.
    10. Paul Jefferies & Michael Hart & Neil Johnson & P.M. Hui, 2001. "From market games to real-world markets," OFRC Working Papers Series 2001mf02, Oxford Financial Research Centre.
    11. Angelini, P. & Maresca, G. & Russo, D., 1996. "Systemic risk in the netting system," Journal of Banking & Finance, Elsevier, vol. 20(5), pages 853-868, June.
    12. Maslov, Sergei, 2000. "Simple model of a limit order-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(3), pages 571-578.
    13. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    14. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    15. P. Jefferies & M.L. Hart & P.M. Hui & N.F. Johnson, 2001. "From market games to real-world markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 493-501, April.
    16. Schlesinger, Harris, 1984. "Two-person insurance negotiation," Insurance: Mathematics and Economics, Elsevier, vol. 3(3), pages 147-149, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Boss & Helmut Elsinger & Martin Summer & Stefan Thurner, 2004. "An Empirical Analysis of the Network Structure of the Austrian Interbank Market," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 7, pages 77-87.
    2. Ruggero Grilli & Gabriele Tedeschi & Mauro Gallegati, 2015. "Markets connectivity and financial contagion," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 287-304, October.
    3. Gabriele Tedeschi & Amin Mazloumian & Mauro Gallegati & Dirk Helbing, 2012. "Bankruptcy Cascades in Interbank Markets," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
    4. Gogas, Periklis & Papadimitriou, Theophilos & Matthaiou, Maria-Artemis, 2016. "Bank supervision using the Threshold-Minimum Dominating Set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 23-35.
    5. Lenzu, Simone & Tedeschi, Gabriele, 2012. "Systemic risk on different interbank network topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4331-4341.
    6. Grilli, Ruggero & Tedeschi, Gabriele & Gallegati, Mauro, 2014. "Bank interlinkages and macroeconomic stability," International Review of Economics & Finance, Elsevier, vol. 34(C), pages 72-88.
    7. Doris Neuberger & Roger Rissi, 2014. "Macroprudential Banking Regulation: Does One Size Fit All?," Journal of Banking and Financial Economics, University of Warsaw, Faculty of Management, vol. 1(1), pages 5-28, May.
    8. Periklis Gogas & Theophilos Papadimitriou & Maria-Artemis Matthaiou, 2022. "Supervision of Banking Networks Using the Multivariate Threshold-Minimum Dominating Set (mT-MDS)," JRFM, MDPI, vol. 15(6), pages 1-13, June.
    9. Christoph Siebenbrunner, 2021. "Quantifying the importance of different contagion channels as sources of systemic risk," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 103-131, January.
    10. Berardi, Simone & Tedeschi, Gabriele, 2017. "From banks' strategies to financial (in)stability," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 255-272.
    11. Xiong Xiong & Zhang Jin & Jin Xi & Feng Xu, 2016. "Review on Financial Innovations in Big Data Era," Journal of Systems Science and Information, De Gruyter, vol. 4(6), pages 489-504, December.
    12. Michael Boss & Helmut Elsinger & Martin Summer & Stefan Thurner, 2004. "Network topology of the interbank market," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 677-684.
    13. Michael Boss & Martin Summer & Stefan Thurner, 2004. "Contagion Flow Through Banking Networks," Papers cond-mat/0403167, arXiv.org.
    14. Lasse Loepfe & Antonio Cabrales & Angel Sánchez, 2013. "Towards a Proper Assignment of Systemic Risk: The Combined Roles of Network Topology and Shock Characteristics," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    15. Gao, Tianjiao & Gupta, Aparna & Gulpinar, Nalan & Zhu, Yun, 2015. "Optimal hedging strategy for risk management on a network," Journal of Financial Stability, Elsevier, vol. 16(C), pages 31-44.
    16. Opeoluwa Banwo & Fabio Caccioli & Paul Harrald & Francesca Medda, 2016. "The Effect Of Heterogeneity On Financial Contagion Due To Overlapping Portfolios," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-20, December.
    17. Stefan, F.M. & Atman, A.P.F., 2023. "Asymmetric rate of returns and wealth distribution influenced by the introduction of technical analysis into a behavioral agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Jiajia, Liu & Kun, Guo & Fangcheng, Tang & Yahan, Wang & Shouyang, Wang, 2023. "The effect of the disposal of non-performing loans on interbank liquidity risk in China: A cash flow network-based analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 105-119.
    19. Tao Xu & Jianmin He & Shouwei Li, 2016. "Multi-Channel Contagion In Dynamic Interbank Market Network," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(06n07), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    2. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    3. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    4. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    5. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    6. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    7. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    8. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    9. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    10. Chen, Fang & Gou, Chengling & Guo, Xiaoqian & Gao, Jieping, 2008. "Prediction of stock markets by the evolutionary mix-game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3594-3604.
    11. Xin, C. & Yang, G. & Huang, J.P., 2017. "Ising game: Nonequilibrium steady states of resource-allocation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 666-673.
    12. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    15. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    16. Rothenstein, R & Pawelzik, K, 2003. "Evolution and anti-evolution in a minimal stock market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 326(3), pages 534-543.
    17. Ren, F. & Zhang, Y.C., 2008. "Trading model with pair pattern strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5523-5534.
    18. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    19. Damien Challet & Tobias Galla, 2005. "Price return autocorrelation and predictability in agent-based models of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 569-576.
    20. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:3:y:2003:i:4:p:306-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.