IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v630y2023ics0378437123008191.html
   My bibliography  Save this article

Asymmetric rate of returns and wealth distribution influenced by the introduction of technical analysis into a behavioral agent-based model

Author

Listed:
  • Stefan, F.M.
  • Atman, A.P.F.

Abstract

Behavioral Finance has become a challenge to the scientific community. Based on the assumption that behavioral aspects of investors may explain some features of the Stock Market, we propose an agent-based model to study quantitatively this relationship. In order to approximate the simulated market to the complexity of real markets, we consider that the investors are connected among them through a Scale-Free network; each one of the investors has his own psychological profile (Imitation, Anti-Imitation, Random); two different strategies for decision making: one of them is based on the trust neighborhood of the investor and the other one considers a technical analysis, the momentum of the market index technique. We analyze the market index fluctuations, the wealth distribution of the investors according to their psychological profiles and the rate of returns distribution. Moreover, we analyze the influence of changing the psychological profile of the hub of the network and report interesting results which show how and when anti-imitation becomes the most profitable strategy for investment. Besides this, an intriguing asymmetry of the rate of returns distribution is explained considering the behavioral aspect of the investors. This asymmetry is quite robust, being observed even when a completely different algorithm to calculate the decision making of the investors was applied to it, a remarkable result which, up to our knowledge, has never been reported before.

Suggested Citation

  • Stefan, F.M. & Atman, A.P.F., 2023. "Asymmetric rate of returns and wealth distribution influenced by the introduction of technical analysis into a behavioral agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
  • Handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008191
    DOI: 10.1016/j.physa.2023.129264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008191
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Pozzi & T. Di Matteo & T. Aste, 2008. "Centrality And Peripherality In Filtered Graphs From Dynamical Financial Correlations," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 927-950.
    2. Hu, Mao-Bin & Jiang, Rui & Wu, Qing-Song & Wu, Yong-Hong, 2007. "Simulating the wealth distribution with a Richest-Following strategy on scale-free network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 467-472.
    3. L. Bargigli & G. di Iasio & L. Infante & F. Lillo & F. Pierobon, 2015. "The multiplex structure of interbank networks," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 673-691, April.
    4. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    5. Kartik Anand & Ben Craig & Goetz von Peter, 2015. "Filling in the blanks: network structure and interbank contagion," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 625-636, April.
    6. Iglesias, J.R. & Gonçalves, S. & Pianegonda, S. & Vega, J.L. & Abramson, G., 2003. "Wealth redistribution in our small world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 327(1), pages 12-17.
    7. T. Di Matteo & T. Aste & S. T. Hyde, 2003. "Exchanges in complex networks: income and wealth distributions," Papers cond-mat/0310544, arXiv.org.
    8. Daniel Fricke & Thomas Lux, 2015. "On the distribution of links in the interbank network: evidence from the e-MID overnight money market," Empirical Economics, Springer, vol. 49(4), pages 1463-1495, December.
    9. Lux, Thomas, 2012. "Estimation of an agent-based model of investor sentiment formation in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1284-1302.
    10. Zubillaga, Bernardo J. & Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2022. "A three-state opinion formation model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    11. Mattia Montagna & Thomas Lux, 2017. "Contagion risk in the interbank market: a probabilistic approach to cope with incomplete structural information," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 101-120, January.
    12. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
    13. Stefan Thurner & Rudolf Hanel & Stefan Pichler, 2003. "Risk trading, network topology and banking regulation," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 306-319.
    14. Coelho, Ricardo & Néda, Zoltán & Ramasco, José J. & Augusta Santos, Maria, 2005. "A family-network model for wealth distribution in societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 515-528.
    15. Nicola Giocoli, 2014. "Network efficiency and the banking system," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 61(3), pages 203-218, September.
    16. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    17. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda & Dirk Helbing, 2013. "Are Random Trading Strategies More Successful than Technical Ones?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    18. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    19. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    20. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    21. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    22. Stefan, F.M. & Atman, A.P.F., 2015. "Is there any connection between the network morphology and the fluctuations of the stock market index?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 630-641.
    23. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    24. Nier, Erlend & Yang, Jing & Yorulmazer, Tanju & Alentorn, Amadeo, 2007. "Network models and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2033-2060, June.
    25. A. E. Biondo & A. Pluchino & A. Rapisarda & D. Helbing, 2013. "Are random trading strategies more successful than technical ones?," Papers 1303.4351, arXiv.org, revised Jul 2013.
    26. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169.
    27. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    28. Blake LeBaron & Ryuichi Yamamoto, 2008. "The Impact of Imitation on Long Memory in an Order-Driven Market," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 34(4), pages 504-517.
    29. Michael Boss & Helmut Elsinger & Martin Summer & Stefan Thurner, 2004. "Network topology of the interbank market," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 677-684.
    30. Iori, Giulia & De Masi, Giulia & Precup, Ovidiu Vasile & Gabbi, Giampaolo & Caldarelli, Guido, 2008. "A network analysis of the Italian overnight money market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 259-278, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. M. Stefan & A. P. F. Atman, 2017. "Asymmetric return rates and wealth distribution influenced by the introduction of technical analysis into a behavioral agent based model," Papers 1711.08282, arXiv.org.
    2. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    3. Hüser, Anne-Caroline, 2016. "Too interconnected to fail: A survey of the Interbank Networks literature," SAFE Working Paper Series 91, Leibniz Institute for Financial Research SAFE, revised 2016.
    4. Edoardo Gaffeo & Massimo Molinari, 2018. "A functional perspective on financial networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 51-79, April.
    5. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    6. Stefan, F.M. & Atman, A.P.F., 2015. "Is there any connection between the network morphology and the fluctuations of the stock market index?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 630-641.
    7. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    8. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    9. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.
    10. Langfield, Sam & Liu, Zijun & Ota, Tomohiro, 2014. "Mapping the UK interbank system," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 288-303.
    11. Elosegui, Pedro & Forte, Federico D. & Montes-Rojas, Gabriel, 2022. "Network structure and fragmentation of the Argentinean interbank markets," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(3).
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    13. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    14. Lux, Thomas, 2016. "Network effects and systemic risk in the banking sector," FinMaP-Working Papers 62, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    15. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    16. Sam Langfield & Kimmo Soramäki, 2016. "Interbank Exposure Networks," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 3-17, January.
    17. Ding Ding & Liyan Han & Libo Yin, 2017. "Systemic risk and dynamics of contagion: a duplex inter-bank network," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1435-1445, September.
    18. León, Carlos & Berndsen, Ron J., 2014. "Rethinking financial stability: Challenges arising from financial networks’ modular scale-free architecture," Journal of Financial Stability, Elsevier, vol. 15(C), pages 241-256.
    19. Christoph Siebenbrunner, 2021. "Quantifying the importance of different contagion channels as sources of systemic risk," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 103-131, January.
    20. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.