IDEAS home Printed from https://ideas.repec.org/a/spt/apfiba/v7y2017i4f7_4_2.html
   My bibliography  Save this article

Testing for Long-memory and Chaos in the Returns of Currency Exchange-traded Notes (ETNs)

Author

Listed:
  • John Francis Diaz
  • Jo-Hui Chen

Abstract

The study uses autoregressive fractionally integrated moving average – fractionally integrated generalized autoregressive conditional heteroskedasticity (ARFIMA-FIGARCH) models and chaos effects to determine nonlinearity properties present on currency ETN returns. The results find that the volatilities of currency ETNs have long-memory, non-stationarity and non-invertibility properties. These findings make the research conclude that mean reversion is a possibility and that the efficient market hypothesis of Fama (1970) became ungrounded on these investment instruments. For the chaos effect, the BDS test finds that ETN returns and ARMA residuals also exhibit random processes, making conventional linear methodologies not appropriate for their analysis. The R/S analysis shows that currency ETN returns, ARMA and GARCH residuals have chaotic properties and are trend-reinforcing series. On the other hand, the correlation dimension analyses further confirmed that the utilized time-series have deterministic chaos properties. Thus, investors trying to predict returns and volatility of currency ETNs would fail to produce accurate findings because of their unstable structures, confirming their non-linear properties.JEL classification numbers: G10, G15Keywords: Currency ETNs, Long-memory Properties, ARFIMA-FIGARCH, Chaos Effects.

Suggested Citation

  • John Francis Diaz & Jo-Hui Chen, 2017. "Testing for Long-memory and Chaos in the Returns of Currency Exchange-traded Notes (ETNs)," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(4), pages 1-2.
  • Handle: RePEc:spt:apfiba:v:7:y:2017:i:4:f:7_4_2
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JAFB%2fVol%207_4_2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apostolos Serletis & Periklis Gogas, 2007. "The North American Natural Gas Liquids Markets are Chaotic," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 17, pages 225-244, World Scientific Publishing Co. Pte. Ltd..
    2. Jin, Yu Ying, 2005. "Competitions hatch butterfly attractors in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 380-388.
    3. Cai, Fang & Howorka, Edward & Wongswan, Jon, 2008. "Informational linkages across trading regions: Evidence from foreign exchange markets," Journal of International Money and Finance, Elsevier, vol. 27(8), pages 1215-1243, December.
    4. Michel Beine & Sebastien Laurent & Christelle Lecourt, 2002. "Accounting for conditional leptokurtosis and closing days effects in FIGARCH models of daily exchange rates," Applied Financial Economics, Taylor & Francis Journals, vol. 12(8), pages 589-600.
    5. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    6. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    7. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    8. Saeed Moshiri & Faezeh Foroutan, 2006. "Forecasting Nonlinear Crude Oil Futures Prices," The Energy Journal, , vol. 27(4), pages 81-96, October.
    9. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    10. Leila Nouira & Ibrahim Ahamada & Jamel Jouini & Alain Nurbel, 2004. "Long-memory and shifts in the unconditional variance in the exchange rate euro/US dollar returns," Applied Economics Letters, Taylor & Francis Journals, vol. 11(9), pages 591-594.
    11. Anning Wei & Raymond M. Leuthold, 1998. "Long Agricultural Futures Prices: ARCH, Long Memory, or Chaos Processes?," Finance 9805001, University Library of Munich, Germany.
    12. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    13. Panas, E., 2001. "Long memory and chaotic models of prices on the London Metal Exchange," Resources Policy, Elsevier, vol. 27(4), pages 235-246, December.
    14. Henry, Olan T. & Olekalns, Nilss, 2002. "Does the Australian dollar real exchange rate display mean reversion," Journal of International Money and Finance, Elsevier, vol. 21(5), pages 651-666, October.
    15. Antonios Antoniou & Constantinos E. Vorlow, 2004. "Price Clustering and Discreteness: Is there Chaos behind the Noise?," Papers cond-mat/0407471, arXiv.org.
    16. Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
    17. Catherine Kyrtsou & Walter C. Labys & Michel Terraza, 2004. "Noisy chaotic dynamics in commodity markets," Empirical Economics, Springer, vol. 29(3), pages 489-502, September.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    19. Opong, Kwaku K. & Mulholland, Gwyneth & Fox, Alan F. & Farahmand, Kambiz, 1999. "The behaviour of some UK equity indices: An application of Hurst and BDS tests1," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 267-282, September.
    20. Siow-Hooi Tan & Mohammad Tariqul Islam Khan, 2010. "Long Memory Features in Return and Volatility of the Malaysian Stock Market," Economics Bulletin, AccessEcon, vol. 30(4), pages 3267-3281.
    21. Bahram Adrangi & Mary Allender & Arjun Chatrath & Kambiz Raffiee, 2010. "Nonlinearities and Chaos: Evidence from Exchange Rates," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 38(2), pages 247-248, June.
    22. Steven C. Blank, 1991. "“Chaos” in futures markets? A nonlinear dynamical analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(6), pages 711-728, December.
    23. Gerasimos G. Rompotis, 2011. "Predictable patterns in ETFs' return and tracking error," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 28(1), pages 14-35, March.
    24. Korkmaz, Turhan & Cevik, Emrah Ismail & Özataç, Nesrin, 2009. "Testing for long memory in ISE using Arfima-Figarch model and structural break test," MPRA Paper 71302, University Library of Munich, Germany.
    25. Hafner, Christian M. & Herwartz, Helmut, 2006. "Volatility impulse responses for multivariate GARCH models: An exchange rate illustration," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 719-740, August.
    26. Antoniou, Antonios & Vorlow, Constantinos E., 2005. "Price clustering and discreteness: is there chaos behind the noise?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 389-403.
    27. Kyongwook Choi & Shawkat Hammoudeh, 2009. "Long Memory in Oil and Refined Products Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 97-116.
    28. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    29. Kyrtsou, Catherine & Terraza, Michel, 2002. "Stochastic chaos or ARCH effects in stock series?: A comparative study," International Review of Financial Analysis, Elsevier, vol. 11(4), pages 407-431.
    30. Panas, Epaminondas & Ninni, Vassilia, 2000. "Are oil markets chaotic? A non-linear dynamic analysis," Energy Economics, Elsevier, vol. 22(5), pages 549-568, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Garcin, 2019. "Hurst Exponents And Delampertized Fractional Brownian Motions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-26, August.
    2. Matthieu Garcin, 2018. "Hurst exponents and delampertized fractional Brownian motions," Working Papers hal-01919754, HAL.
    3. Melike E. Bildirici & Bahri Sonustun, 2019. "Chaotic Behavior in Exchange Rate," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 10(1), pages 17-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    2. Argel S. Masa & John Francis T. Diaz, 2017. "Long-memory Modelling and Forecasting of the Returns and Volatility of Exchange-traded Notes (ETNs)," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 11(1), pages 23-53, February.
    3. Marisa Faggini & Bruna Bruno & Anna Parziale, 2019. "Does Chaos Matter in Financial Time Series Analysis?," International Journal of Economics and Financial Issues, Econjournals, vol. 9(4), pages 18-24.
    4. Quynh-Trang Nguyen & John Francis Diaz & Jo-Hui Chen & Ming-Yen Lee, 2019. "Fractional Integration in Corporate Social Responsibility Indices: A FIGARCH and HYGARCH Approach," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(7), pages 836-850, July.
    5. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    6. Loretta Mastroeni & Pierluigi Vellucci, 2017. "“Chaos” In Energy And Commodity Markets: A Controversial Matter," Departmental Working Papers of Economics - University 'Roma Tre' 0218, Department of Economics - University Roma Tre.
    7. Ritesh Kumar Mishra & Sanjay Sehgal & N.R. Bhanumurthy, 2011. "A search for long‐range dependence and chaotic structure in Indian stock market," Review of Financial Economics, John Wiley & Sons, vol. 20(2), pages 96-104, May.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    9. Leontitsis, Alexandros & Vorlow, Constantinos E., 2006. "Accounting for outliers and calendar effects in surrogate simulations of stock return sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 522-530.
    10. Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    11. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    12. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    13. Trino-Manuel Ñíguez, 2003. "Volatility And Var Forecasting For The Ibex-35 Stock-Return Index Using Figarch-Type Processes And Different Evaluation Criteria," Working Papers. Serie AD 2003-33, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    14. Barkoulas, John T. & Chakraborty, Atreya & Ouandlous, Arav, 2012. "A metric and topological analysis of determinism in the crude oil spot market," Energy Economics, Elsevier, vol. 34(2), pages 584-591.
    15. Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.
    16. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    17. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    18. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    19. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    20. S. Lardic & V. Mignon, 2002. "Term premium and long-range dependence in volatility : A FIGARCH-M estimation on some Asian countries," THEMA Working Papers 2002-26, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    More about this item

    Keywords

    currency etns; long-memory properties; arfima-figarch; â chaos effects.;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:apfiba:v:7:y:2017:i:4:f:7_4_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.