IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i14d10.1007_s11269-016-1487-3.html
   My bibliography  Save this article

Climate Change Impacts on Maize Production in the Warm Heart of Africa

Author

Listed:
  • Kondwani Msowoya

    (University of Central Florida)

  • Kaveh Madani

    (Imperial College London)

  • Rahman Davtalab

    (University of Central Florida)

  • Ali Mirchi

    (The University of Texas at El Paso)

  • Jay R. Lund

    (University of California)

Abstract

Agriculture is the mainstay of economy in Malawi - the warm heart of Africa. It employs 85 % of the labour force, and produces one third of the Gross Domestic Product (GDP) and 90 % of foreign exchange earnings. Maize farming covers over 92 % of Malawi’s agricultural land and contributes over 54 % of national caloric intake. With a subtropical climate and ~99 % rainfed agriculture, Malawi relies heavily on precipitation for its agricultural production. Given the significance of rainfed maize for the nation’s labour force and GDP, we have investigated climate change effects on this staple crop. We show that rainfed maize production in the Lilongwe District, the largest maize growing district in Malawi, may decrease up to 14 % by mid-century due to climate change, rising to as much as 33 % loss by the century’s end. These declines can substantially harm Malawi’s food production and socioeconomic status. Supplemental irrigation, crop diversification and natural conservation methods are promising adaptation strategies to improve Malawi’s food security and socioeconomic stability.

Suggested Citation

  • Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1487-3
    DOI: 10.1007/s11269-016-1487-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1487-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1487-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mapila, Mariam A. T. J. & Kirsten, Johann F. & Meyer, Ferdinand & Kankwamba, Henry, 2013. "A partial equilibrium model of the Malawi maize commodity market:," IFPRI discussion papers 1254, International Food Policy Research Institute (IFPRI).
    2. Anonymous, 1969. "I. United Nations," International Organization, Cambridge University Press, vol. 23(4), pages 971-989, October.
    3. Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
    4. S. Lebel & L. Fleskens & P. Forster & L. Jackson & S. Lorenz, 2015. "Evaluation of In Situ Rainwater Harvesting as an Adaptation Strategy to Climate Change for Maize Production in Rainfed Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4803-4816, October.
    5. World Bank, 2015. "World Development Indicators 2015," World Bank Publications - Books, The World Bank Group, number 21634, December.
    6. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun & Rozelle, Scott & Zhang, Lijuan, 2008. "Can China continue feeding itself ? the impact of climate change on agriculture," Policy Research Working Paper Series 4470, The World Bank.
    7. Data Dea & Ian Scoones, 2003. "Networks of knowledge: how farmers and scientists understand soils and their fertility. a case study from Ethiopia," Oxford Development Studies, Taylor & Francis Journals, vol. 31(4), pages 461-478.
    8. Minot, Nicholas, 2010. "Staple food prices in Malawi," Food Security Collaborative Working Papers 58558, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    9. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katengeza, Samson P. & Holden, Stein T. & Fisher, Monica, 2019. "Use of Integrated Soil Fertility Management Technologies in Malawi: Impact of Dry Spells Exposure," Ecological Economics, Elsevier, vol. 156(C), pages 134-152.
    2. Prăvălie, Remus & Sîrodoev, Igor & Patriche, Cristian & Roșca, Bogdan & Piticar, Adrian & Bandoc, Georgeta & Sfîcă, Lucian & Tişcovschi, Adrian & Dumitraşcu, Monica & Chifiriuc, Carmen & Mănoiu, Valen, 2020. "The impact of climate change on agricultural productivity in Romania. A country-scale assessment based on the relationship between climatic water balance and maize yields in recent decades," Agricultural Systems, Elsevier, vol. 179(C).
    3. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    4. Abbas Ali Chandio & Waqar Akram & Uzma Bashir & Fayyaz Ahmad & Sultan Adeel & Yuansheng Jiang, 2023. "Sustainable maize production and climatic change in Nepal: robust role of climatic and non-climatic factors in the long-run and short-run," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1614-1644, February.
    5. Amadu, Festus O. & McNamara, Paul E. & Miller, Daniel C., 2020. "Yield effects of climate-smart agriculture aid investment in southern Malawi," Food Policy, Elsevier, vol. 92(C).
    6. Boima M. Bernard & Yanping Song & Sehresh Hena & Fayyaz Ahmad & Xin Wang, 2022. "Assessing Africa’s Agricultural TFP for Food Security and Effects on Human Development: Evidence from 35 Countries," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    7. Siminyu, Philip & Oluoch-Kosura, Willis & de Groote, Hugo & Mbau, Judith Syombua, 2021. "Assessing the contribution of climate-smart agricultural practices to the resilience of maize farmers in Bungoma County, Kenya," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 16(2), June.
    8. Teerachai Amnuaylojaroen & Pavinee Chanvichit & Radshadaporn Janta & Vanisa Surapipith, 2021. "Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    9. Adib Roshani & Mehdi Hamidi, 2022. "Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 3981-4001, September.
    10. Qaisar Saddique & Huanjie Cai & Jiatun Xu & Ali Ajaz & Jianqiang He & Qiang Yu & Yunfei Wang & Hui Chen & Muhammad Imran Khan & De Li Liu & Liang He, 2020. "Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1523-1543, December.
    11. Asfaw, Solomon & Pallante, Giacomo & Palma, Alessandro, 2020. "Distributional impacts of soil erosion on agricultural productivity and welfare in Malawi," Ecological Economics, Elsevier, vol. 177(C).
    12. Clifton Makate & Marshall Makate, 2022. "Do Rainfall Shocks Prompt Commercial Input Purchases Amongst Smallholder Farmers in Diverse Regions and Environments in Malawi?," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    13. Amadu, Festus O. & McNamara, Paul E. & Davis, Kristin E., 2021. "Soil health and grain yield impacts of climate resilient agriculture projects: Evidence from southern Malawi," Agricultural Systems, Elsevier, vol. 193(C).
    14. Aida Mehrazar & Ali Reza Massah Bavani & Alireza Gohari & Mahmoud Mashal & Hadisseh Rahimikhoob, 2020. "Adaptation of Water Resources System to Water Scarcity and Climate Change in the Suburb Area of Megacities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3855-3877, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris O. K. Lokonon & Aly A. Mbaye, 2019. "Implications of Climate-Related Factors on Living Standards: Evidence from Sub-Saharan Africa," Economics Bulletin, AccessEcon, vol. 39(2), pages 1404-1417.
    2. Franklin Simtowe & Paswel Marenya & Emily Amondo & Mosisa Worku & Dil Bahadur Rahut & Olaf Erenstein, 2019. "Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 7(1), pages 1-23, December.
    3. Shaikh M. S. U. Eskander & Edward B. Barbier, 2023. "Adaptation to Natural Disasters through the Agricultural Land Rental Market: Evidence from Bangladesh," Land Economics, University of Wisconsin Press, vol. 99(1), pages 141-160.
    4. Maxwell Mkondiwa & Jeffrey Apland, 2022. "Inter-district food flows in Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1553-1568, December.
    5. Boris O. K. Lokonon & Aklesso Y. G. Egbendewe & Naga Coulibaly & Calvin Atewamba, 2019. "The Potential Impact Of Climate Change On Agriculture In West Africa: A Bio-Economic Modeling Approach," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-30, November.
    6. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    7. Jan Fagerberg & Bengt-Åke Lundvall & Martin Srholec, 2018. "Global Value Chains, National Innovation Systems and Economic Development," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 30(3), pages 533-556, July.
    8. Thennakoon, Jayanthi & Findlay, Christopher & Huang, Jikun & Wang, Jinxia, 2020. "Management adaptation to flood in Guangdong Province in China: Do property rights Matter?," World Development, Elsevier, vol. 127(C).
    9. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    10. Abdoul G. Sam & Babatunde O. Abidoye & Sihle Mashaba, 2021. "Climate change and household welfare in sub-Saharan Africa: empirical evidence from Swaziland," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 439-455, April.
    11. Elizabeth Bartholet, 2011. "Ratification by the United States of the Convention on the Rights of the Child: Pros and Cons from a Child’s Rights Perspective," The ANNALS of the American Academy of Political and Social Science, , vol. 633(1), pages 80-101, January.
    12. Roger R. Betancourt, 1969. "R. A. EASTERLIN. Population, Labor Force, and Long Swings in Economic Growth: The American Experience. Pp. xx, 298. New York: National Bureau of Economic Research (Distributed by Columbia University P," The ANNALS of the American Academy of Political and Social Science, , vol. 384(1), pages 183-192, July.
    13. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    14. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    15. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    16. Klotz, Richard & Gurung, Ram & Ogle, Stephen & Paustian, Keith & Sheehan, John & Bento, Antonio M., 2015. "Evaluating Policy Options to Reduce N2O Emissions from US Agriculture," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205808, Agricultural and Applied Economics Association.
    17. Richard Chisik & Nazanin Behzadan & Harun Onder & Apurva Sanghi, 2016. "Aid, Remittances, the Dutch Disease, Refugees, and Kenya," Working Papers 062, Ryerson University, Department of Economics.
    18. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    19. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    20. Corno, Lucia & Voena, Alessandra, 2023. "Child marriage as informal insurance: Empirical evidence and policy simulations," Journal of Development Economics, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1487-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.