IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v78y2013i4p685-709.html
   My bibliography  Save this article

A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models

Author

Listed:
  • Yeojin Chung

    ()

  • Sophia Rabe-Hesketh
  • Vincent Dorie
  • Andrew Gelman
  • Jingchen Liu

Abstract

Group-level variance estimates of zero often arise when fitting multilevel or hierarchical linear models, especially when the number of groups is small. For situations where zero variances are implausible a priori, we propose a maximum penalized likelihood approach to avoid such boundary estimates. This approach is equivalent to estimating variance parameters by their posterior mode, given a weakly informative prior distribution. By choosing the penalty from the log-gamma family with shape parameter greater than 1, we ensure that the estimated variance will be positive. We suggest a default log-gamma(2,λ) penalty with λ→0, which ensures that the maximum penalized likelihood estimate is approximately one standard error from zero when the maximum likelihood estimate is zero, thus remaining consistent with the data while being nondegenerate. We also show that the maximum penalized likelihood estimator with this default penalty is a good approximation to the posterior median obtained under a noninformative prior. Our default method provides better estimates of model parameters and standard errors than the maximum likelihood or the restricted maximum likelihood estimators. The log-gamma family can also be used to convey substantive prior information. In either case—pure penalization or prior information—our recommended procedure gives nondegenerate estimates and in the limit coincides with maximum likelihood as the number of groups increases. Copyright The Psychometric Society 2013

Suggested Citation

  • Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
  • Handle: RePEc:spr:psycho:v:78:y:2013:i:4:p:685-709
    DOI: 10.1007/s11336-013-9328-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9328-2
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warton, David I., 2008. "Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 340-349, March.
    2. Li, Huilin & Lahiri, P., 2010. "An adjusted maximum likelihood method for solving small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 882-892, April.
    3. J. Barkley Rosser, 2009. "Introduction," Chapters,in: Handbook of Research on Complexity, chapter 1 Edward Elgar Publishing.
    4. E. Maris, 1999. "Estimating multiple classification latent class models," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 187-212, June.
    5. Hariharan Swaminathan & Janice Gifford, 1985. "Bayesian estimation in the two-parameter logistic model," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 349-364, September.
    6. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re-evaluation of random-effects meta-analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159.
    7. Gabriela Ciuperca & Andrea Ridolfi & Jérome Idier, 2003. "Penalized Maximum Likelihood Estimator for Normal Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 45-59.
    8. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    9. James Fu & Leon Gleser, 1975. "Classical asymptotic properties of a certain estimator related to the maximum likelihood estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 213-233, December.
    10. Ciprian M. Crainiceanu & David Ruppert, 2004. "Likelihood ratio tests in linear mixed models with one variance component," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 165-185.
    11. Robert Mislevy, 1986. "Bayes modal estimation in item response models," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 177-195, June.
    12. Robert Tsutakawa & Hsin Lin, 1986. "Bayesian estimation of item response curves," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 251-267, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:78:y:2013:i:4:p:685-709. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.