IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i3d10.1007_s11336-023-09921-w.html
   My bibliography  Save this article

Random Effects Multinomial Processing Tree Models: A Maximum Likelihood Approach

Author

Listed:
  • Steffen Nestler

    (Universität Münster)

  • Edgar Erdfelder

    (Universität Mannheim)

Abstract

The present article proposes and evaluates marginal maximum likelihood (ML) estimation methods for hierarchical multinomial processing tree (MPT) models with random and fixed effects. We assume that an identifiable MPT model with S parameters holds for each participant. Of these S parameters, R parameters are assumed to vary randomly between participants, and the remaining $$S-R$$ S - R parameters are assumed to be fixed. We also propose an extended version of the model that includes effects of covariates on MPT model parameters. Because the likelihood functions of both versions of the model are too complex to be tractable, we propose three numerical methods to approximate the integrals that occur in the likelihood function, namely, the Laplace approximation (LA), adaptive Gauss–Hermite quadrature (AGHQ), and Quasi Monte Carlo (QMC) integration. We compare these three methods in a simulation study and show that AGHQ performs well in terms of both bias and coverage rate. QMC also performs well but the number of responses per participant must be sufficiently large. In contrast, LA fails quite often due to undefined standard errors. We also suggest ML-based methods to test the goodness of fit and to compare models taking model complexity into account. The article closes with an illustrative empirical application and an outlook on possible extensions and future applications of the proposed ML approach.

Suggested Citation

  • Steffen Nestler & Edgar Erdfelder, 2023. "Random Effects Multinomial Processing Tree Models: A Maximum Likelihood Approach," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 809-829, September.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:3:d:10.1007_s11336-023-09921-w
    DOI: 10.1007/s11336-023-09921-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-023-09921-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-023-09921-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dora Matzke & Conor Dolan & William Batchelder & Eric-Jan Wagenmakers, 2015. "Bayesian Estimation of Multinomial Processing Tree Models with Heterogeneity in Participants and Items," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 205-235, March.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    4. Gonzalez, Jorge & Tuerlinckx, Francis & De Boeck, Paul & Cools, Ronald, 2006. "Numerical integration in logistic-normal models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1535-1548, December.
    5. Xiangen Hu & William Batchelder, 1994. "The statistical analysis of general processing tree models with the EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 21-47, March.
    6. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    7. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    8. Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
    9. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    10. Karl Klauer, 2010. "Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 70-98, March.
    11. Daniel W. Heck & Edgar Erdfelder & Pascal J. Kieslich, 2018. "Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 893-918, December.
    12. Karl Klauer, 2006. "Hierarchical Multinomial Processing Tree Models: A Latent-Class Approach," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 7-31, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quentin F. Gronau & Eric-Jan Wagenmakers & Daniel W. Heck & Dora Matzke, 2019. "A Simple Method for Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge Sampling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 261-284, March.
    2. Florian Wickelmaier & Achim Zeileis, 2016. "Using Recursive Partitioning to Account for Parameter Heterogeneity in Multinomial Processing Tree Models," Working Papers 2016-26, Faculty of Economics and Statistics, Universität Innsbruck.
    3. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    4. Marta Castela & Edgar Erdfelder, 2017. "Further evidence for the memory state heuristic: Recognition latency predictions for binary inferences," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(6), pages 537-552, November.
    5. Dora Matzke & Conor Dolan & William Batchelder & Eric-Jan Wagenmakers, 2015. "Bayesian Estimation of Multinomial Processing Tree Models with Heterogeneity in Participants and Items," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 205-235, March.
    6. repec:cup:judgdm:v:12:y:2017:i:6:p:537-552 is not listed on IDEAS
    7. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    8. Daniel W. Heck & Edgar Erdfelder & Pascal J. Kieslich, 2018. "Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 893-918, December.
    9. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    10. Steffen Nestler & Sarah Humberg, 2022. "A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 506-532, June.
    11. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Jianhong Shen, 2020. "Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 154-184, March.
    12. Ren, Dianxu & Stone, Roslyn A., 2007. "A Bayesian approach for analyzing a cluster-randomized trial with adjustment for risk misclassification," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5507-5518, August.
    13. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    14. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    15. Harold Doran, 2023. "A Collection of Numerical Recipes Useful for Building Scalable Psychometric Applications," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 37-69, February.
    16. Hedeker, Donald & Nordgren, Rachel, 2013. "MIXREGLS: A Program for Mixed-Effects Location Scale Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i12).
    17. Scott Monroe, 2019. "Estimation of Expected Fisher Information for IRT Models," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 431-447, August.
    18. Cristiano C. Santos & Rosangela H. Loschi, 2017. "Maximum likelihood estimation and parameter interpretation in elliptical mixed logistic regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 209-230, March.
    19. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    20. Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
    21. Ippel, L. & Kaptein, M.C. & Vermunt, J.K., 2019. "Online estimation of individual-level effects using streaming shrinkage factors," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 16-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:3:d:10.1007_s11336-023-09921-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.