IDEAS home Printed from
   My bibliography  Save this article

An adjusted maximum likelihood method for solving small area estimation problems


  • Li, Huilin
  • Lahiri, P.


For the well-known Fay-Herriot small area model, standard variance component estimation methods frequently produce zero estimates of the strictly positive model variance. As a consequence, an empirical best linear unbiased predictor of a small area mean, commonly used in small area estimation, could reduce to a simple regression estimator, which typically has an overshrinking problem. We propose an adjusted maximum likelihood estimator of the model variance that maximizes an adjusted likelihood defined as a product of the model variance and a standard likelihood (e.g., a profile or residual likelihood) function. The adjustment factor was suggested earlier by Carl Morris in the context of approximating a hierarchical Bayes solution where the hyperparameters, including the model variance, are assumed to follow a prior distribution. Interestingly, the proposed adjustment does not affect the mean squared error property of the model variance estimator or the corresponding empirical best linear unbiased predictors of the small area means in a higher order asymptotic sense. However, as demonstrated in our simulation study, the proposed adjustment has a considerable advantage in small sample inference, especially in estimating the shrinkage parameters and in constructing the parametric bootstrap prediction intervals of the small area means, which require the use of a strictly positive consistent model variance estimate.

Suggested Citation

  • Li, Huilin & Lahiri, P., 2010. "An adjusted maximum likelihood method for solving small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 882-892, April.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:882-892

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:csdana:v:114:y:2017:i:c:p:47-60 is not listed on IDEAS
    2. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    3. repec:bla:jorssa:v:180:y:2017:i:4:p:1163-1190 is not listed on IDEAS
    4. Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
    5. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    6. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    7. repec:eee:csdana:v:116:y:2017:i:c:p:67-78 is not listed on IDEAS
    8. repec:exl:29stat:v:16:y:2015:i:4:p:491-510 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:882-892. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.