IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On parametric bootstrap methods for small area prediction

Listed author(s):
  • Peter Hall
  • Tapabrata Maiti
Registered author(s):

    The particularly wide range of applications of small area prediction, e.g. in policy making decisions, has meant that this topic has received substantial attention in recent years. The problems of estimating mean-squared predictive error, of correcting that estimator for bias and of constructing prediction intervals have been addressed by various workers, although existing methodology is still restricted to a narrow range of models. To overcome this difficulty we develop new, bootstrap-based methods, which are applicable in very general settings, for constructing bias-corrected estimators of mean-squared error and for computing prediction regions. Unlike existing techniques, which are based largely on Taylor expansions, our bias-corrected mean-squared error estimators do not require analytical calculation. They also have the property that they are non-negative. Our prediction intervals have a high degree of coverage accuracy, "O"("n"-super- - 3), where "n" is the number of areas, if double-bootstrap methods are employed. The techniques do not depend on the form of the small area estimator and are applicable to general two-level, small area models, where the variables at either level can be discrete or continuous and, in particular, can be non-normal. Most importantly, the new methods are simple and easy to apply. Copyright 2006 Royal Statistical Society.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society Series B.

    Volume (Year): 68 (2006)
    Issue (Month): 2 ()
    Pages: 221-238

    in new window

    Handle: RePEc:bla:jorssb:v:68:y:2006:i:2:p:221-238
    Contact details of provider: Postal:
    12 Errol Street, London EC1Y 8LX, United Kingdom

    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Web page:

    More information through EDIRC

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:68:y:2006:i:2:p:221-238. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.