IDEAS home Printed from
   My bibliography  Save this article

On measuring the variability of small area estimators under a basic area level model


  • Gauri Sankar Datta
  • J. N. K. Rao
  • David Daniel Smith


In this paper based on a basic area level model we obtain second-order accurate approximations to the mean squared error of model-based small area estimators, using the Fay & Herriot (1979) iterative method of estimating the model variance based on weighted residual sum of squares. We also obtain mean squared error estimators unbiased to second order. Based on simulations, we compare the finite-sample performance of our mean squared error estimators with those based on method-of-moments, maximum likelihood and residual maximum likelihood estimators of the model variance. Our results suggest that the Fay--Herriot method performs better, in terms of relative bias of mean squared error estimators, than the other methods across different combinations of number of areas, pattern of sampling variances and distribution of small area effects. We also derive a noninformative prior on the model parameters for which the posterior variance of a small area mean is second-order unbiased for the mean squared error. The posterior variance based on such a prior possesses both Bayesian and frequentist interpretations. Copyright 2005, Oxford University Press.

Suggested Citation

  • Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:183-196

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Gareth O. Roberts & Jeffrey S. Rosenthal, 1999. "Convergence of Slice Sampler Markov Chains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 643-660.
    2. Francesco Bartolucci & Luisa Scaccia & Antonietta Mira, 2006. "Efficient Bayes factor estimation from the reversible jump output," Biometrika, Biometrika Trust, vol. 93(1), pages 41-52, March.
    3. Sylvia Fruhwirth-Schnatter, 2004. "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 143-167, June.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:183-196. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.