IDEAS home Printed from https://ideas.repec.org/p/bdr/region/327.html

Informalidad municipal en Colombia

Author

Listed:
  • Karina Acosta
  • Juliana Jaramillo-Echeverri
  • Daniel Lasso
  • Alejandro Sarasti-Sierra

Abstract

Se estima que más del 50 % de la población laboral en Colombia pertenece al sector informal, un fenómeno persistente durante las últimas tres décadas. A pesar de la amplia literatura sobre la informalidad laboral y sus determinantes a nivel nacional o en las principales áreas urbanas, las tasas de informalidad municipales permanecen inexploradas en el país, debido a la falta de disponibilidad y calidad de los datos. En general, la información necesaria para medir la informalidad subnacional, ya sea a través del tamaño de la empresa, la afliación al régimen contributivo o la existencia de un contrato escrito, es escasa o incompleta, lo que difculta una estimación directa. En este trabajo se propone un ejercicio de medición para avanzar en el estudio de la informalidad en Colombia, estimando la informalidad laboral municipal entre 2005 y 2021. Los resultados muestran que, aunque la informalidad es persistentemente alta, está fuertemente concentrada. Además, se observa que, aunque la informalidad cayó paulatinamente entre 2005 y 2016 en todos los municipios, aquellos con tasas de informalidad más altas experimentaron un retroceso en estas ganancias en 2021. **** ABSTRACT: It is estimated that more than 50 % of the labor force in Colombia belongs to the informal sector, a persistent phenomenon over the last three decades. Despite extensive literature on informality and its determinants at the national level or in the main urban areas, municiapl informality rates remain unexplored in the country due to the lack of availability and quality of data. In general, the information necessary to measure sub-national informality, whether through frm size, afliation to social security, or the existence of a written contract, is scarce or incomplete, making direct estimation difcult. This study proposes a measurement exercise to contribute to the study of informality in Colombia, estimating municipal informality between 2005 and 2021. The results show that, although informality is persistently high, it is strongly concentrated. Furthermore, it is observed that, although informality gradually declined between 2005 and 2016 in all municipalities, those with higher informality rates experienced a setback in these gains in 2021.

Suggested Citation

  • Karina Acosta & Juliana Jaramillo-Echeverri & Daniel Lasso & Alejandro Sarasti-Sierra, 2024. "Informalidad municipal en Colombia," Documentos de trabajo sobre Economía Regional y Urbana 327, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:region:327
    DOI: 10.32468/dtseru.327
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/dtseru.327
    Download Restriction: no

    File URL: https://libkey.io/10.32468/dtseru.327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jhon James Mora & Juan Muro, 2017. "Dynamic Effects of the Minimum Wage on Informality in Colombia," LABOUR, CEIS, vol. 31(1), pages 59-72, March.
    2. Carmen Elisa Fl√≥rez, 2002. "THE FUNCTION OF THE URBAN INFORMAL SECTOR IN EMPLOYMENT: Evidence from Colombia 1984-2000," Documentos CEDE 3595, Universidad de los Andes, Facultad de Economía, CEDE.
    3. Jorge Andrés Tamayo, 2008. "La tasa natural de desempleo en Colombia y sus determinantes," Borradores de Economia 491, Banco de la Republica de Colombia.
    4. Esther López-Vizcaíno & María José Lombardía & Domingo Morales, 2015. "Small area estimation of labour force indicators under a multinomial model with correlated time and area effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 535-565, June.
    5. Luis E. Arango & Luz A. Flórez & Laura D. Guerrero & Alejandra Morales-Rojas, 2020. "Minimum wage effects on labour informality: heterogeneity across demographic groups in Colombia," Borradores de Economia 1104, Banco de la Republica de Colombia.
    6. Li, Huilin & Lahiri, P., 2010. "An adjusted maximum likelihood method for solving small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 882-892, April.
    7. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    8. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    9. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    10. repec:bla:jorssa:v:180:y:2017:i:4:p:1163-1190 is not listed on IDEAS
    11. Luis E. Arango & Luz A. Flórez, 2021. "Regional Labour Informality in Colombia and a Proposal for a Differential Minimum Wage," Journal of Development Studies, Taylor & Francis Journals, vol. 57(6), pages 1016-1037, June.
    12. Bernal Raquel, 2009. "The Informal Labor Market in Colombia: identification and characterization," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frink, Nicolas & Schmid, Timo, 2025. "Small area prediction of counts under machine learning-type mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 211(C).
    2. Andrés Álvarez & Juan Camilo Chaparro & Carolina Gonz�lez & Santiago Levy & Dar�o Maldonado & Marcela Mel�ndez & Natalia Ram�rez & Marta Juanita Villaveces, 2022. "Reporte ejecutivo de la Misión de Empleo de Colombia," Documentos de trabajo 20156, Escuela de Gobierno - Universidad de los Andes.
    3. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    4. Blum, Ricardo & Hiabu, Munir & Mammen, Enno & Meyer, Joseph T., 2025. "Pure interaction effects unseen by Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 212(C).
    5. Aouad, Anthony & Almaksour, Khaled & Abbes, Dhaker, 2024. "Storage management optimization based on electrical consumption and production forecast in a photovoltaic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 128-147.
    6. Asmae Chakir & Mohamed Tabaa, 2024. "Hybrid Renewable Production Scheduling for a PV–Wind-EV-Battery Architecture Using Sequential Quadratic Programming and Long Short-Term Memory–K-Nearest Neighbors Learning for Smart Buildings," Sustainability, MDPI, vol. 16(5), pages 1-24, March.
    7. Giacomo Caterini, 2018. "Classifying Firms with Text Mining," DEM Working Papers 2018/09, Department of Economics and Management.
    8. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    9. Gordeev, Stepan & Steinbach, Sandro, 2024. "Determinants of PTA design: Insights from machine learning," International Economics, Elsevier, vol. 178(C).
    10. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    11. Qiu, Yuhang & Hui, Yunze & Zhao, Pengxiang & Cai, Cheng-Hao & Dai, Baiqian & Dou, Jinxiao & Bhattacharya, Sankar & Yu, Jianglong, 2024. "A novel image expression-driven modeling strategy for coke quality prediction in the smart cokemaking process," Energy, Elsevier, vol. 294(C).
    12. Ye Tian & Xiaobai Angela Yao & Marguerite Madden & Andrew Grundstein, 2024. "Synergic effects of meteorological factors on urban form-outdoor exercise relationship: A study with crowdsourced data," Journal of Geographical Systems, Springer, vol. 26(1), pages 47-72, January.
    13. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    14. Nela Ivković & Željana Bašić & Ivan Jerković, 2024. "Classifying age from medial clavicle using a 30-year threshold: An image analysis based approach," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-16, November.
    15. Pedro Forquesato, 2022. "Who Benefits from Political Connections in Brazilian Municipalities," Papers 2204.09450, arXiv.org.
    16. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    17. Park, Beomjin & Park, Changyi, 2023. "Multiclass Laplacian support vector machine with functional analysis of variance decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    18. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    19. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    20. F. Leung & M. Law & S. K. Djeng, 2024. "Deterministic modelling of implied volatility in cryptocurrency options with underlying multiple resolution momentum indicator and non-linear machine learning regression algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • J46 - Labor and Demographic Economics - - Particular Labor Markets - - - Informal Labor Market
    • O17 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Formal and Informal Sectors; Shadow Economy; Institutional Arrangements
    • O54 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Latin America; Caribbean
    • R23 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Regional Migration; Regional Labor Markets; Population
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:region:327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.