IDEAS home Printed from
   My bibliography  Save this paper

Corrected Empirical Bayes Confidence Intervals in Nested Error Regression Models


  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)


In the small area estimation, the empirical best linear unbiased predictor (EBLUP) or the empirical Bayes estimator (EB) in the linear mixed model is recognized useful because it gives a stable and reliable estimate for a mean of a small area. In practical situations where EBLUP is applied to real data, it is important to evaluate how much EBLUP is reliable. One method for the purpose is to construct a confidence interval based on EBLUP. In this paper, we obtain an asymptotically corrected empirical Bayes confidence interval in a nested error regression model with unbalanced sample sizes and unknown components of variance. The coverage probability is shown to satisfy the confidence level in the second order asymptotics. It is numerically revealed that the corrected confidence interval is superior to the conventional confidence interval based on the sample mean in terms of the coverage probability and the expected width of the interval. Finally, it is applied to the posted land price data in Tokyo and the neighboring prefecture.

Suggested Citation

  • Tatsuya Kubokawa, 2009. "Corrected Empirical Bayes Confidence Intervals in Nested Error Regression Models," CIRJE F-Series CIRJE-F-632, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2009cf632

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Gauri Sankar Datta, 2002. "On an Asymptotic Theory of Conditional and Unconditional Coverage Probabilities of Empirical Bayes Confidence Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 139-152.
    3. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238.
    4. Basu, Ruma & Ghosh, J. K. & Mukerjee, Rahul, 2003. "Empirical Bayes prediction intervals in a normal regression model: higher order asymptotics," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 197-203, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2009cf632. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.