IDEAS home Printed from
   My bibliography  Save this paper

Parametric Bootstrap Methods for Bias Correction in Linear Mixed Models


  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

  • Bui Nagashima

    (Graduate School of Economics, University of Tokyo)


The empirical best linear unbiased predictor (EBLUP) in the linear mixed model (LMM) is useful for the small area estimation, and the estimation of the mean squared error (MSE) of EBLUP is important as a measure of uncertainty of EBLUP. To obtain a second-order unbiased estimator of the MSE, the second-order bias correction has been derived mainly based on Taylor series expansions. However, this approach is harder to implement in complicated models with more unknown parameters like variance components, since we need to compute asymptotic bias, variance and covariance for estimators of unknown parameters as well as partial derivatives of some quantities. The same difficulty occurs in construction of confidence intervals based on EBLUP with second-order correction and in derivation of second-order bias correction terms in the Akaike Information Criterion (AIC) and the conditional AIC. To avoid such difficulty in derivation of second-order bias correction in these problems, the parametric bootstrap methods are suggested in this paper, and their second-order justifications are established. Finally, performances of the suggested procedures are numerically investigated in comparison with some existing procedures given in the literature.

Suggested Citation

  • Tatsuya Kubokawa & Bui Nagashima, 2011. "Parametric Bootstrap Methods for Bias Correction in Linear Mixed Models," CIRJE F-Series CIRJE-F-801, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2011cf801

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Gauri Datta & Tatsuya Kubokawa & Isabel Molina & J. Rao, 2011. "Estimation of mean squared error of model-based small area estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 367-388, August.
    3. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238.
    4. Basu, Ruma & Ghosh, J. K. & Mukerjee, Rahul, 2003. "Empirical Bayes prediction intervals in a normal regression model: higher order asymptotics," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 197-203, June.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2011cf801. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.