IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v103y2008mmarchp340-349.html
   My bibliography  Save this article

Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices

Author

Listed:
  • Warton, David I.

Abstract

No abstract is available for this item.

Suggested Citation

  • Warton, David I., 2008. "Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 340-349, March.
  • Handle: RePEc:bes:jnlasa:v:103:y:2008:m:march:p:340-349
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2008/00000103/00000481/art00038
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azam Kheyri & Andriette Bekker & Mohammad Arashi, 2022. "High-Dimensional Precision Matrix Estimation through GSOS with Application in the Foreign Exchange Market," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    2. Jakub Stoklosa & Heloise Gibb & David I. Warton, 2014. "Fast forward selection for generalized estimating equations with a large number of predictor variables," Biometrics, The International Biometric Society, vol. 70(1), pages 110-120, March.
    3. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Priddle, Jacob W. & Drovandi, Christopher, 2023. "Transformations in semi-parametric Bayesian synthetic likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    5. Shen, Yanfeng & Lin, Zhengyan, 2015. "An adaptive test for the mean vector in large-p-small-n problems," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 25-38.
    6. Lim Johan & Kim Jayoun & Kim Sang-cheol & Yu Donghyeon & Kim Kyunga & Kim Byung Soo, 2012. "Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-30, February.
    7. Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
    8. Joong-Ho Won & Johan Lim & Seung-Jean Kim & Bala Rajaratnam, 2013. "Condition-number-regularized covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 427-450, June.
    9. Ong, Victor M.-H. & Nott, David J. & Tran, Minh-Ngoc & Sisson, Scott A. & Drovandi, Christopher C., 2018. "Likelihood-free inference in high dimensions with synthetic likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 271-291.
    10. van Wieringen, Wessel N. & Peeters, Carel F.W., 2016. "Ridge estimation of inverse covariance matrices from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 284-303.
    11. Chi, Eric C. & Lange, Kenneth, 2014. "Stable estimation of a covariance matrix guided by nuclear norm penalties," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 117-128.
    12. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2021. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 309-352, September.
    13. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    14. Yeojin Chung & Andrew Gelman & Sophia Rabe-Hesketh & Jingchen Liu & Vincent Dorie, 2015. "Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models," Journal of Educational and Behavioral Statistics, , vol. 40(2), pages 136-157, April.
    15. Carel F. W. Peeters & Mark A. Wiel & Wessel N. Wieringen, 2020. "The spectral condition number plot for regularization parameter evaluation," Computational Statistics, Springer, vol. 35(2), pages 629-646, June.
    16. David I Warton & Loïc Thibaut & Yi Alice Wang, 2017. "The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-18, July.
    17. Ilya R Fischhoff & Felicia Keesing & Richard S Ostfeld, 2017. "The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-15, November.
    18. Shen, Yanfeng & Lin, Zhengyan & Zhu, Jun, 2011. "Shrinkage-based regularization tests for high-dimensional data with application to gene set analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2221-2233, July.
    19. David I. Warton, 2011. "Regularized Sandwich Estimators for Analysis of High-Dimensional Data Using Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 67(1), pages 116-123, March.
    20. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    21. Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:103:y:2008:m:march:p:340-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.