IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i1d10.1007_s11069-023-06202-8.html
   My bibliography  Save this article

Effects of seismic risk analysis on regional sectors using both the deterministic and stochastic modeling

Author

Listed:
  • Muhammad Imran Hanif

    (CECOS University of IT and Emerging Sciences)

  • Rehman Akhtar

    (University of Engineering and Technology)

Abstract

A natural disaster like an earthquake has the capability of damaging critical infrastructure systems, and valuable assets, limiting products or services movements, and in extreme conditions may cause injuries and even mortalities. The unavailability of a workforce as a response to an earthquake can directly affect the regional sector's productivity, as most business operations are labor dependent. In addition, the inherent interdependency of regional economic sectors can further delay the recovery process, This paper presents the dynamic inoperability input–output (DIIM) model and sector resilience to formulate a recovery analysis model by incorporating both the deterministic and stochastic modeling for workforce-interdependent sectors in the aftermath of an earthquake. The developed model is capable of evaluating the social and economic losses caused by workforce disruption. Moreover, a risk-based framework developed for the guidance of policymakers is to manage and control the adverse effects of the earthquake on the disrupted region. This paper identifies and prioritizes critical industry sectors based on two metrics i.e., inoperability and economic loss. Inoperability levels describe the percentage variation between the maximum production of the sector to the reduced production level, while economic loss is the quantified monetary value associated with the reduced level of sector output. The main contribution of this work focuses on the modeling of uncertainty caused by new disruption to the interconnected sectors within a recovery horizon of the initial outbreak of the disaster using a dynamic model for the disrupted region. This model is developed and applied to the regional sectors of Pakistan for an earthquake disaster but can be generalized to other regions and other disaster scenarios as well. Finally, the purpose of presenting different earthquake intensity scenarios is to validate the effective use of risk and uncertainty analysis in modeling the inoperability and economic loss behaviors because of time-varying perturbations and their related ripple effects on interdependent economic sectors.

Suggested Citation

  • Muhammad Imran Hanif & Rehman Akhtar, 2024. "Effects of seismic risk analysis on regional sectors using both the deterministic and stochastic modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 639-675, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06202-8
    DOI: 10.1007/s11069-023-06202-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06202-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06202-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joost R. Santos & Yacov Y. Haimes & Chenyang Lian, 2007. "A Framework for Linking Cybersecurity Metrics to the Modeling of Macroeconomic Interdependencies," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1283-1297, October.
    2. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    3. Benson, C. & Clay, E., 1998. "The Impact of Drought on Sub-Saharan African Economies. A Preliminary Examination," Papers 401, World Bank - Technical Papers.
    4. Joost R. Santos, 2006. "Inoperability input‐output modeling of disruptions to interdependent economic systems," Systems Engineering, John Wiley & Sons, vol. 9(1), pages 20-34, March.
    5. Niknejad, Ali & Petrovic, Dobrila, 2016. "A fuzzy dynamic Inoperability Input–output Model for strategic risk management in Global Production Networks," International Journal of Production Economics, Elsevier, vol. 179(C), pages 44-58.
    6. Yasuhide Okuyama & Stephanie E. Chang (ed.), 2004. "Modeling Spatial and Economic Impacts of Disasters," Advances in Spatial Science, Springer, number 978-3-540-24787-6.
    7. Joost R. Santos & Mark J. Orsi & Erik J. Bond, 2009. "Pandemic Recovery Analysis Using the Dynamic Inoperability Input‐Output Model," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1743-1758, December.
    8. Hsu, George J. Y. & Chou, Feng-Ying, 2000. "Integrated planning for mitigating CO2 emissions in Taiwan: a multi-objective programming approach," Energy Policy, Elsevier, vol. 28(8), pages 519-523, July.
    9. Rehman Akhtar & Joost Santos, 2013. "Risk-based input–output analysis of hurricane impacts on interdependent regional workforce systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 391-405, January.
    10. Charles Perrings, 2001. "Resilience and sustainability," Chapters, in: Henk Folmer & H. Landis Gabel & Shelby Gerking & Adam Rose (ed.), Frontiers of Environmental Economics, chapter 13, Edward Elgar Publishing.
    11. Amine El Haimar & Joost Santos, 2015. "A stochastic recovery model of influenza pandemic effects on interdependent workforce systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 987-1011, June.
    12. Michael L. Lahr & Benjamin H. Stevens, 2002. "A Study of the Role of Regionalization in the Generation of Aggregation Error in Regional Input –Output Models," Journal of Regional Science, Wiley Blackwell, vol. 42(3), pages 477-507, August.
    13. Andrea Karim El Meligi & Maurizio Ciaschini & Yousaf Ali Khan & Rosita Pretaroli & Francesca Severini & Claudio Socci, 2019. "The inoperability extended multisectoral model and the Role of Income Distribution: A U.K. Case Study," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 65(3), pages 617-631, September.
    14. Yousaf Ali & Maurizio Ciaschini & Rosita Pretaroli & Claudio Socci, 2015. "Measuring the economic landscape of Italy: target efficiency and control effectiveness," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 42(3), pages 297-321, September.
    15. Jan Oosterhaven, 2017. "On the limited usability of the inoperability IO model," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 452-461, July.
    16. Sungbin Cho & Peter Gordon & James E. Moore II & Harry W. Richardson & Masanobu Shinozuka & Stephanie Chang, 2001. "Integrating Transportation Network and Regional Economic Models to Estimate the Costs of a Large Urban Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 41(1), pages 39-65, February.
    17. Kash Barker & Joost R. Santos, 2010. "A Risk‐Based Approach for Identifying Key Economic and Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 30(6), pages 962-974, June.
    18. Chenyang Lian & Yacov Y. Haimes, 2006. "Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 241-258, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Jin & Haoran Zhou, 2023. "A Demand-Side Inoperability Input–Output Model for Strategic Risk Management: Insight from the COVID-19 Outbreak in Shanghai, China," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    2. Wan, Kaidi & Liu, Bing-Yue & Fan, Ying & Ikonnikova, Svetlana A., 2024. "Modelling and assessing dynamic energy supply resilience to disruption events: An oil supply disruption case in China," Energy Economics, Elsevier, vol. 140(C).
    3. Yaseen, Qazi Muhammad & Akhtar, Rehman & Khalil, Muhammad Kaleem Ullah & Usman Jan, Qazi Muhammad, 2020. "Dynamic inoperability input-output modeling for economic losses estimation in industries during flooding," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    4. Hairui Wei & Ming Dong & Shuyu Sun, 2010. "Inoperability input‐output modeling (IIM) of disruptions to supply chain networks," Systems Engineering, John Wiley & Sons, vol. 13(4), pages 324-339, December.
    5. Joost R. Santos, 2006. "Inoperability input‐output modeling of disruptions to interdependent economic systems," Systems Engineering, John Wiley & Sons, vol. 9(1), pages 20-34, March.
    6. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    7. Krista Danielle S. Yu & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos & Raymond R. Tan, 2016. "A weighted fuzzy linear programming model in economic input–output analysis: an application to risk management of energy system disruptions," Environment Systems and Decisions, Springer, vol. 36(2), pages 183-195, June.
    8. Chen, Hao & Zhang, Wenfeng & Huang, Xiangting & Wang, Xin, 2024. "Estimating the dynamic economic impacts of oil supply disruptions on China: A case study of Malacca Strait block," Resources Policy, Elsevier, vol. 98(C).
    9. Araujo, Inacio F. & Donaghy, Kieran P. & Haddad, Eduardo A. & Hewings, Geoffrey J.D., 2024. "Geographical Propagation of the Economic Impacts of the ISIS Conflict in Iraq," TD NEREUS 6-2024, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).
    10. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Yasuyuki Todo & Kentaro Nakajima & Petr Matous, 2015. "How Do Supply Chain Networks Affect The Resilience Of Firms To Natural Disasters? Evidence From The Great East Japan Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 209-229, March.
    12. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    13. Iman Rahimi Aloughareh & Mohsen Ghafory Ashtiany & Kiarash Nasserasadi, 2016. "An Integrated Methodology For Regional Macroeconomic Loss Estimation Of Earthquake: A Case Study Of Tehran," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(04), pages 1-24, September.
    14. Henriet, Fanny & Hallegatte, Stéphane & Tabourier, Lionel, 2012. "Firm-network characteristics and economic robustness to natural disasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 150-167.
    15. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    16. Michael R. Greenberg & Michael Lahr & Nancy Mantell, 2007. "Understanding the Economic Costs and Benefits of Catastrophes and Their Aftermath: A Review and Suggestions for the U.S. Federal Government," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 83-96, February.
    17. Freire-González, Jaume & Decker, Christopher & Hall, Jim W., 2017. "The Economic Impacts of Droughts: A Framework for Analysis," Ecological Economics, Elsevier, vol. 132(C), pages 196-204.
    18. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    19. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.
    20. Botelho, Vinícius, 2019. "Estimating the economic impacts of power supply interruptions," Energy Economics, Elsevier, vol. 80(C), pages 983-994.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06202-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.