IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01239785.html
   My bibliography  Save this paper

Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters

Author

Listed:
  • Stéphane Hallegatte

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

Estimates of the cost of potential disasters, including indirect economic consequences, are an important input in the design of risk management strategies. The adaptive regional input-output (ARIO) inventory model is a tool to assess indirect disaster losses and to analyze their drivers. It is based on an input-output structure, but it also (i) explicitly represents production bottlenecks and input scarcity and (ii) introduces inventories as an additional flexibility in the production system. This modeling strategy distinguishes between (i) essential supplies that cannot be stocked (e.g., electricity, water) and whose scarcity can paralyze all economic activity; (ii) essential supplies that can be stocked at least temporarily (e.g., steel, chemicals), whose scarcity creates problems only over the medium term; and (iii) supplies that are not essential in the production process, whose scarcity is problematic only over the long run and are therefore easy to replace with imports. The model is applied to the landfall of Hurricane Katrina in Louisiana and identifies two periods in the disaster aftermath: (1) the first year, during which production bottlenecks are responsible for large output losses; (2) the rest of the reconstruction period, during which bottlenecks are inexistent and output losses lower. This analysis also suggests important research questions and policy options to mitigate disaster-related output losses.

Suggested Citation

  • Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Post-Print hal-01239785, HAL.
  • Handle: RePEc:hal:journl:hal-01239785
    DOI: 10.1111/risa.12090
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stéphane Hallegatte & Valentin Przyluski, 2010. "The Economics of Natural Disasters," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(02), pages 14-24, July.
    2. Henriet, Fanny & Hallegatte, Stéphane & Tabourier, Lionel, 2012. "Firm-network characteristics and economic robustness to natural disasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 150-167.
    3. B. Coluzzi & M. Ghil & S. Hallegatte & G. Weisbuch, 2010. "Boolean delay equations on networks: An application to economic damage propagation," Papers 1003.0793, arXiv.org.
    4. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    5. Noy, Ilan, 2009. "The macroeconomic consequences of disasters," Journal of Development Economics, Elsevier, vol. 88(2), pages 221-231, March.
    6. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    7. Raddatz, Claudio, 2009. "The wrath of God : macroeconomic costs of natural disasters," Policy Research Working Paper Series 5039, The World Bank.
    8. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    9. Loayza, Norman V. & Olaberría, Eduardo & Rigolini, Jamele & Christiaensen, Luc, 2012. "Natural Disasters and Growth: Going Beyond the Averages," World Development, Elsevier, vol. 40(7), pages 1317-1336.
    10. Benassy, Jean-Pascal, 1993. "Nonclearing Markets: Microeconomic Concepts and Macroeconomic Applications," Journal of Economic Literature, American Economic Association, vol. 31(2), pages 732-761, June.
    11. Adam Rose & Gbadebo Oladosu & Shu‐Yi Liao, 2007. "Business Interruption Impacts of a Terrorist Attack on the Electric Power System of Los Angeles: Customer Resilience to a Total Blackout," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 513-531, June.
    12. Yacov Y. Haimes & Thomas Longstaff, 2002. "The Role of Risk Analysis in the Protection of Critical Infrastructures Against Terrorism," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 439-444, June.
    13. Hochrainer, Stefan, 2009. "Assessing the macroeconomic impacts of natural disasters : are there any ?," Policy Research Working Paper Series 4968, The World Bank.
    14. Jidong Wu & Ning Li & Stéphane Hallegatte & Peijun Shi & Aijun Hu & Xueqin Liu, 2012. "Regional indirect economic impact evaluation of the 2008 Wenchuan Earthquake," Post-Print hal-00716669, HAL.
    15. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    16. Hallegatte, Stephane & Przyluski, Valentin, 2010. "The economics of natural disasters : concepts and methods," Policy Research Working Paper Series 5507, The World Bank.
    17. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    18. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    19. Kroll, Cynthia A. & Landis, John D. & Shen, Qing & Stryker, Sean, 1991. "Economic Impacts of the Loma Prieta Earthquake: A Focus on Small Businesses," University of California Transportation Center, Working Papers qt05f3382m, University of California Transportation Center.
    20. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2007. "Credit chains and bankruptcy propagation in production networks," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2061-2084, June.
    21. Barbara Coluzzi & Michael Ghil & Stéphane Hallegatte & Gerard Weisbuch, 2011. "Boolean Delay Equations On Networks In Economics And The Geosciences," Post-Print hal-00716516, HAL.
    22. Yasuhide Okuyama & Geoffrey J. D. Hewings & Michael Sonis, 2004. "Measuring Economic Impacts of Disasters: Interregional Input-Output Analysis Using Sequential Interindustry Model," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 5, pages 77-101, Springer.
    23. Satoshi Tsuchiya & Hirokazu Tatano & Norio Okada, 2007. "Economic Loss Assessment due to Railroad and Highway Disruptions," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 147-162.
    24. Sungbin Cho & Peter Gordon & James E. Moore II & Harry W. Richardson & Masanobu Shinozuka & Stephanie Chang, 2001. "Integrating Transportation Network and Regional Economic Models to Estimate the Costs of a Large Urban Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 41(1), pages 39-65, February.
    25. Ilan Noy & Aekkanush Nualsri, 2007. "What do Exogenous Shocks Tell Us about Growth Theories?," Working Papers 200728, University of Hawaii at Manoa, Department of Economics.
    26. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    27. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    28. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    29. Barker, Kash & Santos, Joost R., 2010. "Measuring the efficacy of inventory with a dynamic input-output model," International Journal of Production Economics, Elsevier, vol. 126(1), pages 130-143, July.
    30. Christian R. Jaramillo H., 2009. "Do Natural Disasters Have Long-term Effects on Growth?," Documentos CEDE 6647, Universidad de los Andes, Facultad de Economía, CEDE.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    2. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    4. Hallegatte,Stephane & Bangalore,Mook & Jouanjean,Marie Agnes, 2016. "Higher losses and slower development in the absence of disaster risk management investments," Policy Research Working Paper Series 7632, The World Bank.
    5. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    6. Safarzyńska, Karolina & Brouwer, Roy & Hofkes, Marjan, 2013. "Evolutionary modelling of the macro-economic impacts of catastrophic flood events," Ecological Economics, Elsevier, vol. 88(C), pages 108-118.
    7. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    8. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    9. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    10. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    11. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    12. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    13. Davide Antonioli & Alberto Marzucchi & Marco Modica, 2022. "Resilience, Performance and Strategies in Firms’ Reactions to the Direct and Indirect Effects of a Natural Disaster," Networks and Spatial Economics, Springer, vol. 22(3), pages 541-565, September.
    14. Johanna Choumert-Nkolo & Anaïs Lamour & Pascale Phélinas, 2021. "The Economics of Volcanoes," Economics of Disasters and Climate Change, Springer, vol. 5(2), pages 277-299, July.
    15. Yasuyuki Todo & Kentaro Nakajima & Petr Matous, 2015. "How Do Supply Chain Networks Affect The Resilience Of Firms To Natural Disasters? Evidence From The Great East Japan Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 209-229, March.
    16. Francesco Porcelli & Riccardo Trezzi, 2019. "The impact of earthquakes on economic activity: evidence from Italy," Empirical Economics, Springer, vol. 56(4), pages 1167-1206, April.
    17. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    18. Felbermayr, Gabriel & Gröschl, Jasmin, 2014. "Naturally negative: The growth effects of natural disasters," Journal of Development Economics, Elsevier, vol. 111(C), pages 92-106.
    19. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    20. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01239785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.