IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01239785.html
   My bibliography  Save this paper

Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters

Author

Listed:
  • Stéphane Hallegatte

    (CIRED - centre international de recherche sur l'environnement et le développement - CNRS - Centre National de la Recherche Scientifique - ENPC - École des Ponts ParisTech - EHESS - École des hautes études en sciences sociales - AgroParisTech - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement)

Abstract

Estimates of the cost of potential disasters, including indirect economic consequences, are an important input in the design of risk management strategies. The adaptive regional input-output (ARIO) inventory model is a tool to assess indirect disaster losses and to analyze their drivers. It is based on an input-output structure, but it also (i) explicitly represents production bottlenecks and input scarcity and (ii) introduces inventories as an additional flexibility in the production system. This modeling strategy distinguishes between (i) essential supplies that cannot be stocked (e.g., electricity, water) and whose scarcity can paralyze all economic activity; (ii) essential supplies that can be stocked at least temporarily (e.g., steel, chemicals), whose scarcity creates problems only over the medium term; and (iii) supplies that are not essential in the production process, whose scarcity is problematic only over the long run and are therefore easy to replace with imports. The model is applied to the landfall of Hurricane Katrina in Louisiana and identifies two periods in the disaster aftermath: (1) the first year, during which production bottlenecks are responsible for large output losses; (2) the rest of the reconstruction period, during which bottlenecks are inexistent and output losses lower. This analysis also suggests important research questions and policy options to mitigate disaster-related output losses.

Suggested Citation

  • Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Post-Print hal-01239785, HAL.
  • Handle: RePEc:hal:journl:hal-01239785
    DOI: 10.1111/risa.12090
    Note: View the original document on HAL open archive server: https://hal-enpc.archives-ouvertes.fr/hal-01239785
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. B. Coluzzi & M. Ghil & S. Hallegatte & G. Weisbuch, 2010. "Boolean delay equations on networks: An application to economic damage propagation," Papers 1003.0793, arXiv.org.
    2. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    3. Noy, Ilan, 2009. "The macroeconomic consequences of disasters," Journal of Development Economics, Elsevier, vol. 88(2), pages 221-231, March.
    4. Barbara Coluzzi & Michael Ghil & Stéphane Hallegatte & Gerard Weisbuch, 2011. "Boolean Delay Equations On Networks In Economics And The Geosciences," Post-Print hal-00716516, HAL.
    5. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    6. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    7. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    8. Loayza, Norman V. & Olaberría, Eduardo & Rigolini, Jamele & Christiaensen, Luc, 2012. "Natural Disasters and Growth: Going Beyond the Averages," World Development, Elsevier, vol. 40(7), pages 1317-1336.
    9. Satoshi Tsuchiya & Hirokazu Tatano & Norio Okada, 2007. "Economic Loss Assessment due to Railroad and Highway Disruptions," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 147-162.
    10. Benassy, Jean-Pascal, 1993. "Nonclearing Markets: Microeconomic Concepts and Macroeconomic Applications," Journal of Economic Literature, American Economic Association, vol. 31(2), pages 732-761, June.
    11. Adam Rose & Gbadebo Oladosu & Shu‐Yi Liao, 2007. "Business Interruption Impacts of a Terrorist Attack on the Electric Power System of Los Angeles: Customer Resilience to a Total Blackout," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 513-531, June.
    12. Sungbin Cho & Peter Gordon & James E. Moore II & Harry W. Richardson & Masanobu Shinozuka & Stephanie Chang, 2001. "Integrating Transportation Network and Regional Economic Models to Estimate the Costs of a Large Urban Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 41(1), pages 39-65, February.
    13. Ilan Noy & Aekkanush Nualsri, 2007. "What do Exogenous Shocks Tell Us about Growth Theories?," Working Papers 200728, University of Hawaii at Manoa, Department of Economics.
    14. Yacov Y. Haimes & Thomas Longstaff, 2002. "The Role of Risk Analysis in the Protection of Critical Infrastructures Against Terrorism," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 439-444, June.
    15. Jidong Wu & Ning Li & Stéphane Hallegatte & Peijun Shi & Aijun Hu & Xueqin Liu, 2012. "Regional indirect economic impact evaluation of the 2008 Wenchuan Earthquake," Post-Print hal-00716669, HAL.
    16. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    17. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    18. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    19. Christian R. Jaramillo H., 2009. "Do Natural Disasters Have Long-term Effects on Growth?," Documentos CEDE 006647, Universidad de los Andes - CEDE.
    20. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    21. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2007. "Credit chains and bankruptcy propagation in production networks," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2061-2084, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi Hu & Raghav Pant & Jim W. Hall & Swenja Surminski & Jiashun Huang, 2019. "Multi-Scale Assessment of the Economic Impacts of Flooding: Evidence from Firm to Macro-Level Analysis in the Chinese Manufacturing Sector," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    2. Anton Pichler & J. Doyne Farmer, 2021. "Simultaneous supply and demand constraints in input-output networks: The case of Covid-19 in Germany, Italy, and Spain," Papers 2101.07818, arXiv.org, revised May 2021.
    3. Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
    4. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    5. Zhengtao Zhang & Ning Li & Peng Cui & Hong Xu & Yuan Liu & Xi Chen & Jieling Feng, 2019. "How to Integrate Labor Disruption into an Economic Impact Evaluation Model for Postdisaster Recovery Periods," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2443-2456, November.
    6. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    7. Hiroaki Ishiwata & Muneta Yokomatsu, 2018. "Dynamic Stochastic Macroeconomic Model of Disaster Risk Reduction Investment in Developing Countries," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2424-2440, November.
    8. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.
    9. Darayi, Mohamad & Barker, Kash & Nicholson, Charles D., 2019. "A multi-industry economic impact perspective on adaptive capacity planning in a freight transportation network," International Journal of Production Economics, Elsevier, vol. 208(C), pages 356-368.
    10. Pichler, Anton & Pangallo, Marco & del Rio-Chanona, R. Maria & Lafond, François & Farmer, J. Doyne, 2020. "In and out of lockdown: Propagation of supply and demand shocks in a dynamic input-output model," INET Oxford Working Papers 2021-18, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised Feb 2021.
    11. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    12. Hu, Xi & Pant, Raghav & Hall, Jim W. & Surminski, Swenja & Huang, Jiashun, 2019. "Multi-scale assessment of the economic impacts of flooding: evidence from firm to macro-level analysis in the Chinese manufacturing sector," LSE Research Online Documents on Economics 100534, London School of Economics and Political Science, LSE Library.
    13. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    14. Daoping Wang & Klaus Hubacek & Xi Liang & D’Maris Coffman & Stephane Hallegatte & Dabo Guan, 2021. "Reply to: Observed impacts of the COVID-19 pandemic on global trade," Nature Human Behaviour, Nature, vol. 5(3), pages 308-309, March.
    15. Andre F. T. Avelino & Sandy Dall'erba, 2019. "Comparing the Economic Impact of Natural Disasters Generated by Different Input–Output Models: An Application to the 2007 Chehalis River Flood (WA)," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 85-104, January.
    16. Hiba Baroud & Kash Barker & Jose E. Ramirez‐Marquez & Claudio M. Rocco, 2015. "Inherent Costs and Interdependent Impacts of Infrastructure Network Resilience," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 642-662, April.
    17. Christopher Cotton & Bahman Kashi & Huw Lloyd-Ellis & Frederic Tremblay, 2020. "Quantifying the Economic Impacts of COVID-19 Policy Responses on Canada's Provinces in (Almost) Real Time," Working Paper 1441, Economics Department, Queen's University.
    18. Dabo Guan & Daoping Wang & Stephane Hallegatte & Steven J. Davis & Jingwen Huo & Shuping Li & Yangchun Bai & Tianyang Lei & Qianyu Xue & D’Maris Coffman & Danyang Cheng & Peipei Chen & Xi Liang & Bing, 2020. "Global supply-chain effects of COVID-19 control measures," Nature Human Behaviour, Nature, vol. 4(6), pages 577-587, June.
    19. Hiroyasu Inoue, 2021. "Propagation of International Supply-Chain Disruptions between Firms in a Country," JRFM, MDPI, vol. 14(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    2. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    3. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    4. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    5. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    6. Zhengtao Zhang & Ning Li & Hong Xu & Jieling Feng & Xi Chen & Chao Gao & Peng Zhang, 2019. "Allocating assistance after a catastrophe based on the dynamic assessment of indirect economic losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 17-37, October.
    7. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    8. Eduardo Cavallo & Ilan Noy, 2010. "The Aftermath of Natural Disasters: Beyond Destruction," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(2), pages 25-35, July.
    9. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    10. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    11. Tam Bang Vu & Calvin Luscombe & Shaun McKim, 2014. "Natural Disasters in Japan and Tourism in Developing Countries: The Case of the Pacific Islands," Journal of Empirical Economics, Research Academy of Social Sciences, vol. 3(2), pages 98-107.
    12. Henriet, Fanny & Hallegatte, Stéphane & Tabourier, Lionel, 2012. "Firm-network characteristics and economic robustness to natural disasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 150-167.
    13. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    14. Naqvi, Asjad, 2017. "Deep Impact: Geo-Simulations as a Policy Toolkit for Natural Disasters," World Development, Elsevier, vol. 99(C), pages 395-418.
    15. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    16. Giulia Bettin & Alberto Zazzaro, 2018. "The Impact of Natural Disasters on Remittances to Low- and Middle-Income Countries," Journal of Development Studies, Taylor & Francis Journals, vol. 54(3), pages 481-500, March.
    17. Jie Zhang & Meng Lu & Lulu Zhang & Yadong Xue, 2021. "Assessing indirect economic losses of landslides along highways," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2775-2796, April.
    18. Ilan Noy, 2012. "Natural Disasters and Economic Policy for the Pacific Rim," Working Papers 201201, University of Hawaii at Manoa, Department of Economics.
    19. Stéphane Hallegatte & Fanny Henriet & Jan Corfee-Morlot, 2011. "The economics of climate change impacts and policy benefits at city scale: a conceptual framework," Climatic Change, Springer, vol. 104(1), pages 51-87, January.
    20. Vikrant Panwar & Subir Sen, 2019. "Economic Impact of Natural Disasters: An Empirical Re-examination," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 13(1), pages 109-139, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01239785. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.