IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i5p882-900.html
   My bibliography  Save this article

Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis

Author

Listed:
  • E. E. Koks
  • M. Bočkarjova
  • H. de Moel
  • J. C. J. H. Aerts

Abstract

In this article, we propose an integrated direct and indirect flood risk model for small‐ and large‐scale flood events, allowing for dynamic modeling of total economic losses from a flood event to a full economic recovery. A novel approach is taken that translates direct losses of both capital and labor into production losses using the Cobb‐Douglas production function, aiming at improved consistency in loss accounting. The recovery of the economy is modeled using a hybrid input‐output model and applied to the port region of Rotterdam, using six different flood events (1/10 up to 1/10,000). This procedure allows gaining a better insight regarding the consequences of both high‐ and low‐probability floods. The results show that in terms of expected annual damage, direct losses remain more substantial relative to the indirect losses (approximately 50% larger), but for low‐probability events the indirect losses outweigh the direct losses. Furthermore, we explored parameter uncertainty using a global sensitivity analysis, and varied critical assumptions in the modeling framework related to, among others, flood duration and labor recovery, using a scenario approach. Our findings have two important implications for disaster modelers and practitioners. First, high‐probability events are qualitatively different from low‐probability events in terms of the scale of damages and full recovery period. Second, there are substantial differences in parameter influence between high‐probability and low‐probability flood modeling. These findings suggest that a detailed approach is required when assessing the flood risk for a specific region.

Suggested Citation

  • E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:5:p:882-900
    DOI: 10.1111/risa.12300
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12300
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hallegatte, Stephane & Hourcade, Jean-Charles & Dumas, Patrice, 2007. "Why economic dynamics matter in assessing climate change damages: Illustration on extreme events," Ecological Economics, Elsevier, vol. 62(2), pages 330-340, April.
    2. Yasuhide Okuyama, 2014. "Disaster And Economic Structural Change: Case Study On The 1995 Kobe Earthquake," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 98-117, March.
    3. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    4. Gerard Eding & Jan Oosterhaven & Bas Vet & Henk Nijmeijer, 1999. "Constructing Regional Supply and Use Tables: Dutch Experiences," Advances in Spatial Science, in: Geoffrey J. D. Hewings & Michael Sonis & Moss Madden & Yoshio Kimura (ed.), Understanding and Interpreting Economic Structure, chapter 12, pages 237-262, Springer.
    5. Yasuhide Okuyama & Geoffrey J. D. Hewings & Michael Sonis, 2004. "Measuring Economic Impacts of Disasters: Interregional Input-Output Analysis Using Sequential Interindustry Model," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 5, pages 77-101, Springer.
    6. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    7. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    8. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    9. Joost R. Santos & Yacov Y. Haimes, 2004. "Modeling the Demand Reduction Input‐Output (I‐O) Inoperability Due to Terrorism of Interconnected Infrastructures," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1437-1451, December.
    10. Olaf Jonkeren & Georgios Giannopoulos, 2014. "Analysing Critical Infrastructure Failure With A Resilience Inoperability Input--Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 39-59, March.
    11. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    12. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    13. Kash Barker & Joost R. Santos, 2010. "A Risk‐Based Approach for Identifying Key Economic and Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 30(6), pages 962-974, June.
    14. Jonkman, S.N. & Bockarjova, M. & Kok, M. & Bernardini, P., 2008. "Integrated hydrodynamic and economic modelling of flood damage in the Netherlands," Ecological Economics, Elsevier, vol. 66(1), pages 77-90, May.
    15. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    16. Nobuhiro Hosoe & Kenji Gasawa & Hideo Hashimoto, 2010. "Textbook of Computable General Equilibrium Modelling," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-28165-3.
    17. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    18. Jun Li & Douglas Crawford‐Brown & Mark Syddall & Dabo Guan, 2013. "Modeling Imbalanced Economic Recovery Following a Natural Disaster Using Input‐Output Analysis," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1908-1923, October.
    19. Barker, Kash & Santos, Joost R., 2010. "Measuring the efficacy of inventory with a dynamic input-output model," International Journal of Production Economics, Elsevier, vol. 126(1), pages 130-143, July.
    20. Adam Rose & Dan Wei, 2013. "Estimating The Economic Consequences Of A Port Shutdown: The Special Role Of Resilience," Economic Systems Research, Taylor & Francis Journals, vol. 25(2), pages 212-232, June.
    21. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    3. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    4. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    5. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    6. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    7. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    8. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    9. Otto, C. & Willner, S.N. & Wenz, L. & Frieler, K. & Levermann, A., 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 232-269.
    10. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    11. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
    12. K. Jenkins, 2013. "Indirect economic losses of drought under future projections of climate change: a case study for Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1967-1986, December.
    13. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    14. Zhuoqun Gao & R. Richard Geddes & Tao Ma, 2020. "Direct and Indirect Economic Losses Using Typhoon-Flood Disaster Analysis: An Application to Guangdong Province, China," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    15. Botelho, Vinícius, 2019. "Estimating the economic impacts of power supply interruptions," Energy Economics, Elsevier, vol. 80(C), pages 983-994.
    16. Hallegatte, Stephane, 2014. "Economic resilience: definition and measurement," Policy Research Working Paper Series 6852, The World Bank.
    17. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
    18. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    19. Irfan Ahmed & Claudio Socci & Rosita Pretaroli & Francesca Severini & Stefano Deriu, 2022. "Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 426-453, January.
    20. Baghersad, Milad & Zobel, Christopher W., 2015. "Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors," International Journal of Production Economics, Elsevier, vol. 168(C), pages 71-80.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:5:p:882-900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.