IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v34y2006i3p399-424.html
   My bibliography  Save this article

Cores of non-atomic market games

Author

Listed:
  • M. Amarante
  • F. Maccheroni

    ()

  • M. Marinacci
  • L. Montrucchio

Abstract

We study the cores of non-atomic market games, a class of transferable utility co- operative games introduced by Aumann and Shapley [2], and, more in general, of those games that admit a na-continuous and concave extension to the set of ideal coalitions, studied by Einy, Moreno, and Shitovitz [9]. We show that the core of such games is norm compact and some related results. We also give a Multiple Priors interpretation of some of our .ndings.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • M. Amarante & F. Maccheroni & M. Marinacci & L. Montrucchio, 2006. "Cores of non-atomic market games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(3), pages 399-424, October.
  • Handle: RePEc:spr:jogath:v:34:y:2006:i:3:p:399-424
    DOI: 10.1007/s00182-006-0029-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-006-0029-2
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ghirardato, Paolo & Marinacci, Massimo, 2002. "Ambiguity Made Precise: A Comparative Foundation," Journal of Economic Theory, Elsevier, vol. 102(2), pages 251-289, February.
    2. Hart, Sergiu & Neyman, Abraham, 1988. "Values of non-atomic vector measure games : Are they linear combinations of the measures?," Journal of Mathematical Economics, Elsevier, vol. 17(1), pages 31-40, February.
    3. Marinacci, Massimo & Montrucchio, Luigi, 2003. "Subcalculus for set functions and cores of TU games," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 1-25, February.
    4. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    5. Alain Chateauneuf & Fabio Maccheroni & Massimo Marinacci & Jean-Marc Tallon, 2005. "Monotone continuous multiple priors," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(4), pages 973-982, November.
    6. Neyman, Abraham, 2002. "Values of games with infinitely many players," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 56, pages 2121-2167 Elsevier.
    7. Massimo Marinacci & Luigi Montrucchio, 2005. "Stable cores of large games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(2), pages 189-213, June.
    8. Diego Moreno & Benyamin Shitovitz & Ezra Einy, 1999. "The core of a class of non-atomic games which arise in economic applications," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(1), pages 1-14.
    9. Philippe Robert-Demontrond & R. Ringoot, 2004. "Introduction," Post-Print halshs-00081823, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Amarante & Luigi Montrucchio, 2010. "The bargaining set of a large game," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(3), pages 313-349, June.
    2. Edhan, Omer, 2015. "Payoffs in exact TU economies," Journal of Economic Theory, Elsevier, vol. 155(C), pages 152-184.
    3. Massimiliano Amarante & Luigi Montrucchio, 2007. "Mas-Colell Bargaining Set of Large Games," Carlo Alberto Notebooks 63, Collegio Carlo Alberto.
    4. Amarante, Massimiliano, 2014. "A characterization of exact non-atomic market games," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 59-62.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:34:y:2006:i:3:p:399-424. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.