IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v4y2014i3p309-328.html

Dynamic Potential Games: The Discrete-Time Stochastic Case

Author

Listed:
  • David González-Sánchez
  • Onésimo Hernández-Lerma

Abstract

This paper concerns a class of nonstationary discrete-time stochastic noncooperative games. Our goals are threefold. First, we give conditions to find Nash equilibria by means of the Euler equation approach. Second, we identify subclasses of dynamic potential games. Finally, within one of this subclasses, we identify a further subclass for which Nash equilibria are also Pareto (or cooperative) solutions. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • David González-Sánchez & Onésimo Hernández-Lerma, 2014. "Dynamic Potential Games: The Discrete-Time Stochastic Case," Dynamic Games and Applications, Springer, vol. 4(3), pages 309-328, September.
  • Handle: RePEc:spr:dyngam:v:4:y:2014:i:3:p:309-328
    DOI: 10.1007/s13235-014-0105-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13235-014-0105-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s13235-014-0105-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ui, Takashi, 2001. "Robust Equilibria of Potential Games," Econometrica, Econometric Society, vol. 69(5), pages 1373-1380, September.
    2. Branzei, Rodica & Mallozzi, Lina & Tijs, Stef, 2003. "Supermodular games and potential games," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 39-49, February.
    3. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    4. Maldonado, Wilfredo L. & Moreira, Humberto Luiz Ataíde, 2006. "Solving Euler Equations: Classical Methods and the C¹ Contraction Mapping Method Revisited," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 60(2), November.
    5. Rabah Amir & Niels Nannerup, 2006. "Information Structure and the Tragedy of the Commons in Resource Extraction," Journal of Bioeconomics, Springer, vol. 8(2), pages 147-165, August.
    6. repec:ebl:ecbull:v:3:y:2003:i:1:p:1-14 is not listed on IDEAS
    7. Dechert, Dee, 1978. "Optimal control problems from second-order difference equations," Journal of Economic Theory, Elsevier, vol. 19(1), pages 50-63, October.
    8. Sandholm, William H., 2009. "Large population potential games," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1710-1725, July.
    9. Dubey, Pradeep & Haimanko, Ori & Zapechelnyuk, Andriy, 2006. "Strategic complements and substitutes, and potential games," Games and Economic Behavior, Elsevier, vol. 54(1), pages 77-94, January.
    10. Robert J. Aumann, 2025. "Subjectivity and Correlation in Randomized Strategies," World Scientific Book Chapters, in: SELECTED CONTRIBUTIONS TO GAME THEORY, chapter 4, pages 73-113, World Scientific Publishing Co. Pte. Ltd..
    11. Slade, Margaret E, 1994. "What Does an Oligopoly Maximize?," Journal of Industrial Economics, Wiley Blackwell, vol. 42(1), pages 45-61, March.
    12. Robert J. Aumann, 2025. "Correlated Equilibrium as an Expression of Bayesian Rationality," World Scientific Book Chapters, in: SELECTED CONTRIBUTIONS TO GAME THEORY, chapter 7, pages 175-200, World Scientific Publishing Co. Pte. Ltd..
    13. Humberto Moreira & Wilfredo Maldonado, 2003. "A contractive method for computing the stationary solution of the Euler equation," Economics Bulletin, AccessEcon, vol. 3(1), pages 1-14.
    14. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329, January.
    15. David Levhari & Leonard J. Mirman, 1980. "The Great Fish War: An Example Using a Dynamic Cournot-Nash Solution," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 322-334, Spring.
    16. Martin-Herran, G. & Rincon-Zapatero, J.P., 2005. "Efficient Markov perfect Nash equilibria: theory and application to dynamic fishery games," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1073-1096, June.
    17. Dechert, W.D. & O'Donnell, S.I., 2006. "The stochastic lake game: A numerical solution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1569-1587.
    18. Brânzei, R. & Mallozzi, L. & Tijs, S.H., 2003. "Supermodular games and potential games," Other publications TiSEM 87c16860-0596-4448-808d-c, Tilburg University, School of Economics and Management.
    19. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    20. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Mallozzi, 2013. "An application of optimization theory to the study of equilibria for games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 523-539, September.
    2. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    3. Ewerhart, Christian, 2017. "The lottery contest is a best-response potential game," Economics Letters, Elsevier, vol. 155(C), pages 168-171.
    4. D. Dragone & L. Lambertini & A. Palestini, 2008. "A Class of Best-Response Potential Games," Working Papers 635, Dipartimento Scienze Economiche, Universita' di Bologna.
    5. Oyama, Daisuke, 2009. "Agglomeration under forward-looking expectations: Potentials and global stability," Regional Science and Urban Economics, Elsevier, vol. 39(6), pages 696-713, November.
    6. Oyama, Daisuke & Tercieux, Olivier, 2009. "Iterated potential and robustness of equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1726-1769, July.
    7. Nora, Vladyslav & Uno, Hiroshi, 2014. "Saddle functions and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 866-877.
    8. Ricardo Josa-Fombellida & Juan Rincón-Zapatero, 2015. "Euler–Lagrange equations of stochastic differential games: application to a game of a productive asset," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 61-108, May.
    9. Tercieux, Olivier, 2006. "p-Best response set and the robustness of equilibria to incomplete information," Games and Economic Behavior, Elsevier, vol. 56(2), pages 371-384, August.
    10. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    11. Dawid, Herbert & Keoula, Michel Y. & Kopel, Michael & Kort, Peter M., 2015. "Product innovation incentives by an incumbent firm: A dynamic analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 411-438.
    12. Peter Duersch & Jörg Oechssler & Burkhard Schipper, 2012. "Pure strategy equilibria in symmetric two-player zero-sum games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 553-564, August.
    13. Peter Duersch & Jörg Oechssler & Burkhard Schipper, 2014. "When is tit-for-tat unbeatable?," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 25-36, February.
    14. Morten L. Bech & Rodney J. Garratt, 2012. "Illiquidity in the Interbank Payment System Following Wide‐Scale Disruptions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(5), pages 903-929, August.
    15. Alejandra Fonseca-Morales & Onésimo Hernández-Lerma, 2018. "Potential Differential Games," Dynamic Games and Applications, Springer, vol. 8(2), pages 254-279, June.
    16. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2020. "Best response algorithms in ratio-bounded games: convergence of affine relaxations to Nash equilibria," CSEF Working Papers 593, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    17. Philippe Jehiel & Moritz Meyer-ter-Vehn & Benny Moldovanu, 2008. "Ex-post implementation and preference aggregation via potentials," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 469-490, December.
    18. E. Emanuel Rapsch, 2024. "Decision making in stochastic extensive form II: Stochastic extensive forms and games," Papers 2411.17587, arXiv.org.
    19. Burkhard Schipper & Peter Duersch & Joerg Oechssler, 2011. "Once Beaten, Never Again: Imitation in Two-Player Potential Games," Working Papers 1112, University of California, Davis, Department of Economics.
    20. Arsen Palestini & Ilaria Poggio, 2015. "A Bayesian potential game to illustrate heterogeneity in cost/benefit characteristics," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 62(1), pages 23-39, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:4:y:2014:i:3:p:309-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.