IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v113y2012i2p121-139.html
   My bibliography  Save this article

Failure to achieve stringent carbon reduction targets in a second-best policy world

Author

Listed:
  • Neil Strachan
  • Will Usher

Abstract

No abstract is available for this item.

Suggested Citation

  • Neil Strachan & Will Usher, 2012. "Failure to achieve stringent carbon reduction targets in a second-best policy world," Climatic Change, Springer, vol. 113(2), pages 121-139, July.
  • Handle: RePEc:spr:climat:v:113:y:2012:i:2:p:121-139
    DOI: 10.1007/s10584-011-0267-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0267-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0267-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valentina Bosetti & David G. Victor, 2011. "Politics and Economics of Second-Best Regulation of Greenhouse Gases: The Importance of Regulatory Credibility," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-24.
    2. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
    3. Mathy, Sandrine & Guivarch, Céline, 2010. "Climate policies in a second-best world--A case study on India," Energy Policy, Elsevier, vol. 38(3), pages 1519-1528, March.
    4. Lawrence H. Goulder & Ian W.H. Parry & Roberton C. Williams III & Dallas Burtraw, 2002. "The Cost-Effectiveness of Alternative Instruments for Environmental Protection in a Second-Best Setting," Chapters, in: Lawrence H. Goulder (ed.), Environmental Policy Making in Economies with Prior Tax Distortions, chapter 27, pages 523-554, Edward Elgar Publishing.
    5. Strachan, Neil, 2011. "Business-as-Unusual: Existing policies in energy model baselines," Energy Economics, Elsevier, vol. 33(2), pages 153-160, March.
    6. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    7. Ottmar Edenhofer, Kai Lessmann, Claudia Kemfert, Michael Grubb and Jonathan Kohler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 57-108.
    8. Parry, Ian W. H. & Williams III, Roberton C., 1999. "A second-best evaluation of eight policy instruments to reduce carbon emissions," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 347-373, August.
    9. Stavins, Robert N. & Jaffe, Judson & Schatzki, Todd, 2007. "Too Good to Be True? Three Economic Assessments of California Climate Change Policy," RFF Working Paper Series dp-07-12, Resources for the Future.
    10. Boemare, Catherine & Quirion, Philippe, 2002. "Implementing greenhouse gas trading in Europe: lessons from economic literature and international experiences," Ecological Economics, Elsevier, vol. 43(2-3), pages 213-230, December.
    11. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    12. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," Working Papers hal-00866437, HAL.
    13. van Vuuren, Detlef P. & Weyant, John & de la Chesnaye, Francisco, 2006. "Multi-gas scenarios to stabilize radiative forcing," Energy Economics, Elsevier, vol. 28(1), pages 102-120, January.
    14. Brigitte Knopf, Ottmar Edenhofer, Christian Flachsland, Marcel T. J. Kok, Hermann Lotze-Campen, Gunnar Luderer, Alexander Popp, Detlef P. van Vuuren, 2010. "Managing the Low-Carbon Transition - From Model Results to Policies," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    15. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    16. Strachan, Neil & Pye, Steve & Kannan, Ramachandran, 2009. "The iterative contribution and relevance of modelling to UK energy policy," Energy Policy, Elsevier, vol. 37(3), pages 850-860, March.
    17. Burtraw, Dallas & Palmer, Karen & Krupnick, Alan & Evans, David & Toth, Russell, 2005. "Economics of Pollution Trading for SO2 and NOx," RFF Working Paper Series dp-05-05, Resources for the Future.
    18. Robert Stavins & Judson Jaffe & Todd Schatzki, 2007. "Too Good to Be True? An Examination of Three Economic Assessments of California Climate Change Policy," NBER Working Papers 13587, National Bureau of Economic Research, Inc.
    19. Hughes, Nick & Strachan, Neil, 2010. "Methodological review of UK and international low carbon scenarios," Energy Policy, Elsevier, vol. 38(10), pages 6056-6065, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dodds, Paul E., 2014. "Integrating housing stock and energy system models as a strategy to improve heat decarbonisation assessments," Applied Energy, Elsevier, vol. 132(C), pages 358-369.
    2. Trutnevyte, Evelina & Barton, John & O'Grady, Áine & Ogunkunle, Damiete & Pudjianto, Danny & Robertson, Elizabeth, 2014. "Linking a storyline with multiple models: A cross-scale study of the UK power system transition," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 26-42.
    3. Kim, Yohan & Lee, Joosung & Ahn, Jaemyung, 2019. "Innovation towards sustainable technologies: A socio-technical perspective on accelerating transition to aviation biofuel," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 317-329.
    4. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.
    5. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    6. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    2. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    3. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    4. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
    5. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    6. Dagoumas, [alpha].S. & Barker, T.S., 2010. "Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model," Energy Policy, Elsevier, vol. 38(6), pages 3067-3077, June.
    7. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    8. Trutnevyte, Evelina & Barton, John & O'Grady, Áine & Ogunkunle, Damiete & Pudjianto, Danny & Robertson, Elizabeth, 2014. "Linking a storyline with multiple models: A cross-scale study of the UK power system transition," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 26-42.
    9. Strachan, Neil, 2011. "Business-as-Unusual: Existing policies in energy model baselines," Energy Economics, Elsevier, vol. 33(2), pages 153-160, March.
    10. Wegner, Marie-Sophie & Hall, Stephen & Hardy, Jeffrey & Workman, Mark, 2017. "Valuing energy futures; a comparative analysis of value pools across UK energy system scenarios," Applied Energy, Elsevier, vol. 206(C), pages 815-828.
    11. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    12. Pizer, William A. & Burtraw, Dallas & Harrington, Winston & Newell, Richard G. & Sanchirico, James N., 2005. "Modeling Economywide versus Sectoral Climate Policies Using Combined Aggregate-Sectoral Models," Discussion Papers 10502, Resources for the Future.
    13. Lehmann, Paul, 2010. "Combining emissions trading and emissions taxes in a multi-objective world," UFZ Discussion Papers 4/2010, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    14. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    15. Sterner, Thomas & Muller, Adrian, 2006. "Output and Abatement Effects of Allocation Readjustment in Permit Trade," RFF Working Paper Series dp-06-49, Resources for the Future.
    16. Finon, Dominique, 2019. "Carbon policy in developing countries: Giving priority to non-price instruments," Energy Policy, Elsevier, vol. 132(C), pages 38-43.
    17. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    18. Brita Bye & Karine Nyborg, 1999. "The Welfare Effects of Carbon Policies: Grandfathered Quotas versus Differentiated Taxes," Discussion Papers 261, Statistics Norway, Research Department.
    19. Alfredo Marvão Pereira & Rui M. Pereira, 2012. "DGEP - A Dynamic General Equilibrium Model of the Portuguese Economy: Model Documentation," Working Papers 127, Department of Economics, College of William and Mary.
    20. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:113:y:2012:i:2:p:121-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.