Forecasting crude oil prices with alternative data and a deep learning approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-024-06056-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Basher, Syed A. & Sadorsky, Perry, 2006.
"Oil price risk and emerging stock markets,"
Global Finance Journal, Elsevier, vol. 17(2), pages 224-251, December.
- Syed A. Basher & Perry Sadorsky, 2004. "Oil price risk and emerging stock markets," International Finance 0410003, University Library of Munich, Germany.
- Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
- Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
- Vanstone, Bruce & Finnie, Gavin & Hahn, Tobias, 2012. "Creating trading systems with fundamental variables and neural networks: The Aby case study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 86(C), pages 78-91.
- He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
- Treynor, Jack L & Ferguson, Robert, 1985. "In Defense of Technical Analysis," Journal of Finance, American Finance Association, vol. 40(3), pages 757-773, July.
- Narayan, Paresh Kumar & Gupta, Rangan, 2015.
"Has oil price predicted stock returns for over a century?,"
Energy Economics, Elsevier, vol. 48(C), pages 18-23.
- Paresh K. Narayan & Rangan Gupta, 2014. "Has Oil Pirce Predicted Stock Returns for Over a Century?," Working Papers 201446, University of Pretoria, Department of Economics.
- Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Working Papers fe_2015_08, Deakin University, Department of Economics.
- Fang, Tianhui & Zheng, Chunling & Wang, Donghua, 2023. "Forecasting the crude oil prices with an EMD-ISBM-FNN model," Energy, Elsevier, vol. 263(PA).
- Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2020. "Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM," Energies, MDPI, vol. 13(11), pages 1-18, June.
- Tian, Guangning & Peng, Yuchao & Meng, Yuhao, 2023. "Forecasting crude oil prices in the COVID-19 era: Can machine learn better?," Energy Economics, Elsevier, vol. 125(C).
- Gun Il Kim & Beakcheol Jang, 2023. "Petroleum Price Prediction with CNN-LSTM and CNN-GRU Using Skip-Connection," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
- Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
- Park, Jungwook & Ratti, Ronald A., 2008. "Oil price shocks and stock markets in the U.S. and 13 European countries," Energy Economics, Elsevier, vol. 30(5), pages 2587-2608, September.
- Salisu, Afees A. & Vo, Xuan Vinh & Lawal, Adedoyin, 2021. "Hedging oil price risk with gold during COVID-19 pandemic," Resources Policy, Elsevier, vol. 70(C).
- Feyen, Erik & Alonso Gispert, Tatiana & Kliatskova, Tatsiana & Mare, Davide S., 2021. "Financial Sector Policy Response to COVID-19 in Emerging Markets and Developing Economies," Journal of Banking & Finance, Elsevier, vol. 133(C).
- Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020.
"Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities,"
Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Jules Sadefo-Kamdem & Rose Bandolo Essomba & James Njong Berinyuy, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Post-Print hal-02921304, HAL.
- Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
- Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2023. "Forecasting crude oil prices: A reduced-rank approach," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 698-711.
- Yoshino, Naoyuki & Taghizadeh-Hesary, Farhad & Otsuka, Miyu, 2021. "Covid-19 and Optimal Portfolio Selection for Investment in Sustainable Development Goals," Finance Research Letters, Elsevier, vol. 38(C).
- Menkhoff, Lukas, 2010.
"The use of technical analysis by fund managers: International evidence,"
Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
- Menkhoff, Lukas, 2010. "The Use of Technical Analysis by Fund Managers: International Evidence," Hannover Economic Papers (HEP) dp-446, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Harrison Hong & Jeremy C. Stein, 1999.
"A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets,"
Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
- Harrison Hong & Jeremy C. Stein, 1997. "A Unified Theory of Underreaction, Momentum Trading and Overreaction in Asset Markets," NBER Working Papers 6324, National Bureau of Economic Research, Inc.
- Godarzi, Ali Abbasi & Amiri, Rohollah Madadi & Talaei, Alireza & Jamasb, Tooraj, 2014. "Predicting oil price movements: A dynamic Artificial Neural Network approach," Energy Policy, Elsevier, vol. 68(C), pages 371-382.
- Lin, Faqin & Sim, Nicholas C.S., 2013. "Trade, income and the Baltic Dry Index," European Economic Review, Elsevier, vol. 59(C), pages 1-18.
- Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
- AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
- Panas, Epaminondas & Ninni, Vassilia, 2000. "Are oil markets chaotic? A non-linear dynamic analysis," Energy Economics, Elsevier, vol. 22(5), pages 549-568, October.
- Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Stavros Degiannakis & George Filis & Vipin Arora, 2018.
"Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence,"
The Energy Journal, , vol. 39(5), pages 85-130, September.
- Stavros Degiannakis, George Filis, and Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
- Degiannakis, Stavros & Filis, George & Arora, Vipin, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," MPRA Paper 96270, University Library of Munich, Germany.
- Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil prices and stock markets: A review of the theory and empirical evidence," BAFES Working Papers BAFES22, Department of Accounting, Finance & Economic, Bournemouth University.
- Godarzi, Ali Abbasi & Amiri, Rohollah Madadi & Talaei, Alireza & Jamasb, Tooraj, 2014. "Predicting oil price movements: A dynamic Artificial Neural Network approach," Energy Policy, Elsevier, vol. 68(C), pages 371-382.
- Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
- Chang, Bisharat Hussain & Sharif, Arshian & Aman, Ameenullah & Suki, Norazah Mohd & Salman, Asma & Khan, Syed Abdul Rehman, 2020. "The asymmetric effects of oil price on sectoral Islamic stocks: New evidence from quantile-on-quantile regression approach," Resources Policy, Elsevier, vol. 65(C).
- Xiao, Jihong & Hu, Chunyan & Ouyang, Guangda & Wen, Fenghua, 2019. "Impacts of oil implied volatility shocks on stock implied volatility in China: Empirical evidence from a quantile regression approach," Energy Economics, Elsevier, vol. 80(C), pages 297-309.
- Chen, Haixin & Liu, Yancheng & Li, Xiangjie & Gu, Xiang & Fan, Kun, 2024. "Oil market regulatory: An ensembled model for prediction," Finance Research Letters, Elsevier, vol. 67(PA).
- Lu-Tao Zhao & Guan-Rong Zeng & Ling-Yun He & Ya Meng, 2020. "Forecasting Short-Term Oil Price with a Generalised Pattern Matching Model Based on Empirical Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1151-1169, April.
- Nafeesa Yunus, 2023. "Co‐movement among oil, stock, bond, and housing markets: An analysis of U.S., Asian, and European economies," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 393-436, June.
- Cheema, Muhammad A. & Scrimgeour, Frank, 2019. "Oil prices and stock market anomalies," Energy Economics, Elsevier, vol. 83(C), pages 578-587.
- Naeem, Muhammad Abubakr & Balli, Faruk & Shahzad, Syed Jawad Hussain & de Bruin, Anne, 2020. "Energy commodity uncertainties and the systematic risk of US industries," Energy Economics, Elsevier, vol. 85(C).
- Sarwar, Suleman & Khalfaoui, Rabeh & Waheed, Rida & Dastgerdi, Hamidreza Ghorbani, 2019.
"Volatility spillovers and hedging: Evidence from Asian oil-importing countries,"
Resources Policy, Elsevier, vol. 61(C), pages 479-488.
- Suleman Sarwar & Rabeh Khalfaoui & Rida Waheed & Hamidreza Ghorbani Dastgerdi, 2019. "Volatility spillovers and hedging: Evidence from Asian oil-importing countries," Post-Print hal-03797591, HAL.
- David C. Broadstock & Ying Fan & Qiang Ji & Dayong Zhang, 2016.
"Shocks and Stocks: A Bottom-up Assessment of the Relationship Between Oil Prices, Gasoline Prices and the Returns of Chinese Firms,"
The Energy Journal, , vol. 37(1_suppl), pages 55-86, January.
- David C. Broadstock, Ying Fan, Qiang Ji, and Dayong Zhang, 2016. "Shocks and Stocks: A Bottom-up Assessment of the Relationship Between Oil Prices, Gasoline Prices and the Returns of Chinese Firms," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
- Mishra, Shekhar & Mishra, Sibanjan, 2021. "Are Indian sectoral indices oil shock prone? An empirical evaluation," Resources Policy, Elsevier, vol. 70(C).
- Xiao, Jihong & Zhou, Min & Wen, Fengming & Wen, Fenghua, 2018. "Asymmetric impacts of oil price uncertainty on Chinese stock returns under different market conditions: Evidence from oil volatility index," Energy Economics, Elsevier, vol. 74(C), pages 777-786.
- Kristjanpoller, Werner D. & Concha, Diego, 2016. "Impact of fuel price fluctuations on airline stock returns," Applied Energy, Elsevier, vol. 178(C), pages 496-504.
- Zaighum, Isma & Aman, Ameenullah & Sharif, Arshian & Suleman, Muhammad Tahir, 2021. "Do energy prices interact with global Islamic stocks? Fresh insights from quantile ARDL approach," Resources Policy, Elsevier, vol. 72(C).
- Kristoufek, Ladislav, 2019.
"Are the crude oil markets really becoming more efficient over time? Some new evidence,"
Energy Economics, Elsevier, vol. 82(C), pages 253-263.
- Ladislav Kristoufek, 2018. "Are the Crude Oil Markets Really Becoming More Efficient over Time? Some New Evidence," Working Papers IES 2018/07, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2018.
- Silvapulle, Param & Smyth, Russell & Zhang, Xibin & Fenech, Jean-Pierre, 2017. "Nonparametric panel data model for crude oil and stock market prices in net oil importing countries," Energy Economics, Elsevier, vol. 67(C), pages 255-267.
- Xiao, Jihong & Wang, Yudong, 2022. "Good oil volatility, bad oil volatility, and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 953-966.
More about this item
Keywords
Deep learning; Machine learning; Convolutional neural network; COVID-19; Crude oil;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-024-06056-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.