IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v334y2024i1d10.1007_s10479-021-04241-7.html
   My bibliography  Save this article

Seasonal volatility in agricultural markets: modelling and empirical investigations

Author

Listed:
  • L. Schneider

    (EMLYON Business School)

  • B. Tavin

    (EMLYON Business School)

Abstract

This paper deals with the issue of modelling the volatility of futures prices in agricultural markets. We develop a multi-factor model in which the stochastic volatility dynamics incorporate a seasonal component. In addition, we employ a maturity-dependent damping term to account for the Samuelson effect. We give the conditions under which the volatility dynamics are well defined and obtain the joint characteristic function of a pair of futures prices. We then derive the state-space representation of our model in order to use the Kalman filter algorithm for estimation and prediction. The empirical analysis is carried out using daily futures data from 2007 to 2019 for corn, cotton, soybeans, sugar and wheat. In-sample, the seasonal models clearly outperform the nested non-seasonal models in all five markets. Out-of-sample, we predict volatility peaks with high accuracy for four of these five commodities.

Suggested Citation

  • L. Schneider & B. Tavin, 2024. "Seasonal volatility in agricultural markets: modelling and empirical investigations," Annals of Operations Research, Springer, vol. 334(1), pages 7-58, March.
  • Handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-021-04241-7
    DOI: 10.1007/s10479-021-04241-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04241-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04241-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao Lu & Jan C. Fransoo & Chung-Yee Lee, 2017. "Carrier Portfolio Management for Shipping Seasonal Products," Operations Research, INFORMS, vol. 65(5), pages 1250-1266, October.
    2. Abraham Lioui & Patrice Poncet, 2005. "Dynamic Asset Allocation with Forwards and Futures," Springer Books, Springer, number 978-0-387-24106-7, December.
    3. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Schneider, Lorenz & Tavin, Bertrand, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect: An analysis of crude oil calendar spread options," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 185-202.
    6. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    7. Yoosef Maghsoodi, 1996. "Solution Of The Extended Cir Term Structure And Bond Option Valuation," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 89-109, January.
    8. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    9. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    10. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
    11. Chun, Young H., 2003. "Optimal pricing and ordering policies for perishable commodities," European Journal of Operational Research, Elsevier, vol. 144(1), pages 68-82, January.
    12. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    13. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    14. Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2013. "The Fundamentals of Commodity Futures Returns," Review of Finance, European Finance Association, vol. 17(1), pages 35-105.
    15. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    16. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    17. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    18. Nicola Secomandi, 2010. "Optimal Commodity Trading with a Capacitated Storage Asset," Management Science, INFORMS, vol. 56(3), pages 449-467, March.
    19. Wiedenmann, Susanne & Geldermann, Jutta, 2015. "Supply planning for processors of agricultural raw materials," European Journal of Operational Research, Elsevier, vol. 242(2), pages 606-619.
    20. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.
    21. Viviana Fanelli & Maren Diane Schmeck, 2019. "On the seasonality in the implied volatility of electricity options," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1321-1337, August.
    22. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    23. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    24. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    25. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    26. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    27. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    28. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    29. Doran, James S. & Ronn, Ehud I., 2008. "Computing the market price of volatility risk in the energy commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2541-2552, December.
    30. Stuart J. Allen & Edmund W. Schuster, 2004. "Controlling the Risk for an Agricultural Harvest," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 225-236, July.
    31. Widodo, K.H. & Nagasawa, H. & Morizawa, K. & Ota, M., 2006. "A periodical flowering-harvesting model for delivering agricultural fresh products," European Journal of Operational Research, Elsevier, vol. 170(1), pages 24-43, April.
    32. Gary Gorton & K. Geert Rouwenhorst, 2006. "Facts and Fantasies about Commodity Futures," Financial Analysts Journal, Taylor & Francis Journals, vol. 62(2), pages 47-68, March.
    33. repec:dau:papers:123456789/1937 is not listed on IDEAS
    34. Ni, Yuanming & Sandal, Leif Kristoffer, 2019. "Seasonality matters: A multi-season, multi-state dynamic optimization in fisheries," European Journal of Operational Research, Elsevier, vol. 275(2), pages 648-658.
    35. repec:dau:papers:123456789/1433 is not listed on IDEAS
    36. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    37. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    38. Galai, Dan, 1979. "A Proposal for Indexes for Traded Call Options," Journal of Finance, American Finance Association, vol. 34(5), pages 1157-1172, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenz Schneider & Bertrand Tavin, 2018. "Seasonal Stochastic Volatility and the Samuelson Effect in Agricultural Futures Markets," Papers 1802.01393, arXiv.org, revised Nov 2018.
    2. Carme Frau & Viviana Fanelli, 2024. "Seasonality in commodity prices: new approaches for pricing plain vanilla options," Annals of Operations Research, Springer, vol. 336(1), pages 1089-1131, May.
    3. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    4. Lorenz Schneider & Bertrand Tavin, 2015. "Seasonal Stochastic Volatility and Correlation together with the Samuelson Effect in Commodity Futures Markets," Papers 1506.05911, arXiv.org.
    5. Kang, Boda & Nikitopoulos, Christina Sklibosios & Prokopczuk, Marcel, 2020. "Economic determinants of oil futures volatility: A term structure perspective," Energy Economics, Elsevier, vol. 88(C).
    6. Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
    7. Bertrand Tavin & Lorenz Schneider, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect : An analysis of crude oil calendar spread options," Post-Print hal-02311970, HAL.
    8. Crosby, John & Frau, Carme, 2022. "Jumps in commodity prices: New approaches for pricing plain vanilla options," Energy Economics, Elsevier, vol. 114(C).
    9. Schneider, Lorenz & Tavin, Bertrand, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect: An analysis of crude oil calendar spread options," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 185-202.
    10. Carl Chiarella & Boda Kang & Christina Sklibosios Nikitopoulos & Thuy‐Duong Tô, 2016. "The Return–Volatility Relation in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(2), pages 127-152, February.
    11. Anders B. Trolle & Eduardo S. Schwartz, 2006. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," NBER Working Papers 12744, National Bureau of Economic Research, Inc.
    12. Leif Andersen, 2010. "Markov models for commodity futures: theory and practice," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 831-854.
    13. Gudkov, Nikolay & Ignatieva, Katja, 2021. "Electricity price modelling with stochastic volatility and jumps: An empirical investigation," Energy Economics, Elsevier, vol. 98(C).
    14. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    15. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B. & Sheng, Ni & Wei, Xinyang, 2024. "Variance dynamics and term structure of the natural gas market," Energy Economics, Elsevier, vol. 137(C).
    16. Ewald, Christian & Zou, Yihan, 2021. "Analytic formulas for futures and options for a linear quadratic jump diffusion model with seasonal stochastic volatility and convenience yield: Do fish jump?," European Journal of Operational Research, Elsevier, vol. 294(2), pages 801-815.
    17. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    18. Tang, Wenjin & Bu, Hui & Ji, Yuqiong & Li, Zhongfei, 2024. "Market uncertainty and information content in complex seasonality of prices," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
    19. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    20. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.

    More about this item

    Keywords

    Stochastic volatility; Model selection; Agricultural commodities; Seasonal volatility;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-021-04241-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.