IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp176-202.html
   My bibliography  Save this article

Analytical computation of conditional moments in the extended Cox–Ingersoll–Ross process with regime switching: Hybrid PDE system solutions with financial applications

Author

Listed:
  • Rujivan, Sanae
  • Thamrongrat, Nopporn
  • Juntanon, Parun
  • Djehiche, Boualem

Abstract

In this paper, we introduce a novel analytical approach for the computation of the nth conditional moments of an m-state regime-switching extended Cox–Ingersoll–Ross process driven by a continuous-time finite-state irreducible Markov chain. This approach is applicable for all integers n≥1 and m≥1, thereby ensuring wide-ranging utility. The key of our investigation is a complex hybrid system of inter-connected PDEs, derived through a utilization of the Feynman–Kac formula for regime-switching diffusion processes. Our exploration into the solutions of this hybrid PDE system culminates in the derivation of exact closed-form formulas for the conditional moments for diverse values of n and m. Additionally, we study the asymptotic characteristics of the first conditional moments for the 2-state regime-switching Cox–Ingersoll–Ross process, particularly focusing on the effects of the symmetry inherent in the Markov chain’s intensity matrix and the implications of various parameter configurations. Highlighting the practicality of our methodology, we conduct Monte Carlo simulations to not only corroborate the accuracy and computational efficacy of our proposed approach but also to demonstrate its applicability to real-world applications in financial markets. A principal application highlighted in our study is the valuation of VIX futures and VIX options within a dynamic, mean-reverting, hybrid regime-switching framework. This exemplifies the potential of our analytical method to significantly impact contemporary financial modeling and derivative pricing.

Suggested Citation

  • Rujivan, Sanae & Thamrongrat, Nopporn & Juntanon, Parun & Djehiche, Boualem, 2025. "Analytical computation of conditional moments in the extended Cox–Ingersoll–Ross process with regime switching: Hybrid PDE system solutions with financial applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 176-202.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:176-202
    DOI: 10.1016/j.matcom.2024.09.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424003872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.09.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    2. Daniel Dufresne, 2000. "Laguerre Series for Asian and Other Options," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 407-428, October.
    3. Tim Leung & Jiao Li & Xin Li & Zheng Wang, 2016. "Speculative Futures Trading under Mean Reversion," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 23(4), pages 281-304, December.
    4. Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
    5. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    6. Zhang, Zhenzhong & Zhou, Tiandao & Jin, Xinghu & Tong, Jinying, 2020. "Convergence of the Euler–Maruyama method for CIR model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 192-210.
    7. Wu, Shu & Zeng, Yong, 2006. "The term structure of interest rates under regime shifts and jumps," Economics Letters, Elsevier, vol. 93(2), pages 215-221, November.
    8. L. Schneider & B. Tavin, 2024. "Seasonal volatility in agricultural markets: modelling and empirical investigations," Annals of Operations Research, Springer, vol. 334(1), pages 7-58, March.
    9. Wu, Tao, 2006. "Macro Factors and the Affine Term Structure of Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(7), pages 1847-1875, October.
    10. Yoosef Maghsoodi, 1996. "Solution Of The Extended Cir Term Structure And Bond Option Valuation," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 89-109, January.
    11. Tim Leung & Xin Li, 2016. "Futures Trading Under Mean Reversion," World Scientific Book Chapters, in: Optimal Mean Reversion Trading Mathematical Analysis and Practical Applications, chapter 5, pages 105-127, World Scientific Publishing Co. Pte. Ltd..
    12. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    13. Jiao Li, 2016. "Trading VIX futures under mean reversion with regime switching," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-20, September.
    14. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    15. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    16. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    17. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    18. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2005. "Option pricing and Esscher transform under regime switching," Annals of Finance, Springer, vol. 1(4), pages 423-432, October.
    19. Jiao Li, 2016. "Trading VIX Futures under Mean Reversion with Regime Switching," Papers 1605.07945, arXiv.org, revised Jun 2016.
    20. Carme Frau & Viviana Fanelli, 2024. "Correction to: Seasonality in commodity prices: new approaches for pricing plain vanilla options," Annals of Operations Research, Springer, vol. 332(1), pages 1297-1297, January.
    21. Lorenz Schneider & Bertrand Tavin, 2024. "Seasonal volatility in agricultural markets : modelling and empirical investigations," Post-Print hal-04514341, HAL.
    22. Chen, Xiaoyi & Feng, JianFen & Wang, Tianyi, 2023. "Pricing VIX futures: A framework with random level shifts," Finance Research Letters, Elsevier, vol. 52(C).
    23. Carme Frau & Viviana Fanelli, 2024. "Seasonality in commodity prices: new approaches for pricing plain vanilla options," Annals of Operations Research, Springer, vol. 336(1), pages 1089-1131, May.
    24. Robert Elliott & Tak Siu & Leunglung Chan, 2008. "A PDE approach for risk measures for derivatives with regime switching," Annals of Finance, Springer, vol. 4(1), pages 55-74, January.
    25. Zhiguang Wang & Robert T. Daigler, 2011. "The performance of VIX option pricing models: Empirical evidence beyond simulation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(3), pages 251-281, March.
    26. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    27. Peng, Qidi & Schellhorn, Henry, 2018. "On the distribution of extended CIR model," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 23-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao Li, 2016. "Trading VIX Futures under Mean Reversion with Regime Switching," Papers 1605.07945, arXiv.org, revised Jun 2016.
    2. Jiao Li, 2016. "Trading VIX futures under mean reversion with regime switching," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-20, September.
    3. Tim Leung & Brian Ward, 2018. "Dynamic Index Tracking and Risk Exposure Control Using Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(2), pages 180-212, March.
    4. Yerkin Kitapbayev & Tim Leung, 2018. "Mean Reversion Trading With Sequential Deadlines And Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-22, February.
    5. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2024. "The rough Hawkes Heston stochastic volatility model," Post-Print hal-03827332, HAL.
    6. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    7. repec:hal:wpaper:hal-03827332 is not listed on IDEAS
    8. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Papers 2212.10917, arXiv.org, revised May 2023.
    9. Tim Leung & Yang Zhou, 2019. "Optimal dynamic futures portfolio in a regime-switching market framework," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-27, December.
    10. Tim Leung & Brian Ward, 2020. "Tracking VIX with VIX Futures: Portfolio Construction and Performance," World Scientific Book Chapters, in: John B Guerard & William T Ziemba (ed.), HANDBOOK OF APPLIED INVESTMENT RESEARCH, chapter 21, pages 557-596, World Scientific Publishing Co. Pte. Ltd..
    11. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    12. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    13. Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
    14. Alessandra Cretarola & Gianna Figà-Talamanca & Marco Patacca, 2025. "Option pricing in a sentiment-biased stochastic volatility model," Annals of Finance, Springer, vol. 21(1), pages 69-95, March.
    15. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    16. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.
    17. Mehrdoust, Farshid & Noorani, Idin & Kanniainen, Juho, 2024. "Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 228-269.
    18. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2023. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Post-Print hal-03909334, HAL.
    19. Lech A. Grzelak, 2022. "On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500," Papers 2208.12518, arXiv.org.
    20. Ivan Guo & Gregoire Loeper & Jan Obloj & Shiyi Wang, 2020. "Joint Modelling and Calibration of SPX and VIX by Optimal Transport," Papers 2004.02198, arXiv.org, revised Sep 2021.
    21. Tim Leung & Yang Zhou, 2020. "Optimal dynamic futures portfolio in a regime-switching market framework," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:176-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.