IDEAS home Printed from
   My bibliography  Save this article

Solution Of The Extended Cir Term Structure And Bond Option Valuation


  • Yoosef Maghsoodi


The extended Cox-Ingersoll-Ross (ECIR) models of interest rates allow for time-dependent parameters in the CIR square-root model. This article presents closed-form pathwise unique solutions of these unsolved stochastic differential equations (s.d.e.s) in terms of functionals of their driving Brownian motion and parameters. It is shown that quadratics in solution of linear s.d.e.s solve the ECIR model if and only if the "dimension" of the model is a positive integer and that this solution can be achieved by construction of a pathwise unique "generalized" Ornstein-Uhlenbeck process from the ECIR Brownian motion. For real valued dimensions an extension of the time-change theorem of Dubins and Schwarz (1965) is presented and applied to show that a lognormal process solves the model through a stochastic time change. Pathwise equivalence to a rescaled time-changed Bessel square process is also established. These novel results are applied to characterize zero-hitting time and to produce transition density and zero-hitting conditions for the ECIR spot rate. the CIR term structure is then extended to ECIR under no arbitrage, and its solutions and the transition density are represented under a new ECIR martingale measure. the findings are employed to derive a closed-form ECIR bond option valuation formula which generalizes that obtained by CIR (1985). Copyright 1996 Blackwell Publishers.

Suggested Citation

  • Yoosef Maghsoodi, 1996. "Solution Of The Extended Cir Term Structure And Bond Option Valuation," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 89-109.
  • Handle: RePEc:bla:mathfi:v:6:y:1996:i:1:p:89-109

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. D. Duffie & D. Filipovic & W. Schachermayer, 2002. "Affine Processes and Application in Finance," NBER Technical Working Papers 0281, National Bureau of Economic Research, Inc.
    2. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    3. Griselda Deelstra, 1999. "Yield option pricing in the generalized Cox-Ingersoll-Ross Model," ULB Institutional Repository 2013/7592, ULB -- Universite Libre de Bruxelles.
    4. Li, Da-Ye & Nishimura, Yusaku & Men, Ming, 2014. "Fractal markets: Liquidity and investors on different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 144-151.
    5. Lorenz Schneider & Bertrand Tavin, 2015. "Seasonal Stochastic Volatility and Correlation together with the Samuelson Effect in Commodity Futures Markets," Papers 1506.05911,
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    7. Gourieroux, C. & Monfort, A., 2008. "Quadratic stochastic intensity and prospective mortality tables," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 174-184, August.
    8. Cousin, Areski & Jiao, Ying & Robert, Christian Y. & Zerbib, Olivier David, 2016. "Asset allocation strategies in the presence of liability constraints," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 327-338.
    9. Choi, Seungmoon, 2013. "Closed-form likelihood expansions for multivariate time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 174(2), pages 45-65.
    10. Griselda Deelstra, 2000. "Long-term returns in stochastic interest rate models: applications," ULB Institutional Repository 2013/7590, ULB -- Universite Libre de Bruxelles.
    11. Erik Schlogl & Lutz Schlogl, 2000. "A square root interest rate model fitting discrete initial term structure data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(3), pages 183-209.
    12. Daglish, Toby, 2010. "Lattice methods for no-arbitrage pricing of interest rate securities," Working Paper Series 4050, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    13. Angelos Dassios & Jayalaxshmi Nagaradjasarma, 2006. "The square-root process and Asian options," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 337-347.
    14. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    15. Egorov, Alexei V. & Li, Haitao & Xu, Yuewu, 2003. "Maximum likelihood estimation of time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 114(1), pages 107-139, May.
    16. Lorenz Schneider & Bertrand Tavin, 2018. "The Samuelson Effect and Seasonal Stochastic Volatility in Agricultural Futures Markets," Papers 1802.01393,
    17. Filipovic, Damir, 2005. "Time-inhomogeneous affine processes," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 639-659, April.
    18. de Kort, J. & Vellekoop, M.H., 2017. "Existence of optimal consumption strategies in markets with longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 107-121.
    19. Antonio Mannolini & Carlo Mari & Roberto Renò, 2008. "Pricing caps and floors with the extended CIR model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 13(4), pages 386-400.
    20. Guarin, Alexander & Liu, Xiaoquan & Ng, Wing Lon, 2014. "Recovering default risk from CDS spreads with a nonlinear filter," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 87-104.
    21. Lin-Yee Hin & Nikolai Dokuchaev, 2016. "Short Rate Forecasting Based On The Inference From The Cir Model For Multiple Yield Curve Dynamics," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-33, March.
    22. Dassios, Angelos & Nagaradjasarma, Jayalaxshmi, 2011. "Pricing of Asian options on interest rates in the CIR model," LSE Research Online Documents on Economics 32084, London School of Economics and Political Science, LSE Library.
    23. Choi, Seungmoon, 2015. "Explicit form of approximate transition probability density functions of diffusion processes," Journal of Econometrics, Elsevier, vol. 187(1), pages 57-73.
    24. Guo, Zhi Jun, 2008. "A note on the CIR process and the existence of equivalent martingale measures," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 481-487, April.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:6:y:1996:i:1:p:89-109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.