IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1506.05911.html
   My bibliography  Save this paper

Seasonal Stochastic Volatility and Correlation together with the Samuelson Effect in Commodity Futures Markets

Author

Listed:
  • Lorenz Schneider
  • Bertrand Tavin

Abstract

We introduce a multi-factor stochastic volatility model based on the CIR/Heston volatility process that incorporates seasonality and the Samuelson effect. First, we give conditions on the seasonal term under which the corresponding volatility factor is well-defined. These conditions appear to be rather mild. Second, we calculate the joint characteristic function of two futures prices for different maturities in the proposed model. This characteristic function is analytic. Finally, we provide numerical illustrations in terms of implied volatility and correlation produced by the proposed model with five different specifications of the seasonality pattern. The model is found to be able to produce volatility smiles at the same time as a volatility term-structure that exhibits the Samuelson effect with a seasonal component. Correlation, instantaneous or implied from calendar spread option prices via a Gaussian copula, is also found to be seasonal.

Suggested Citation

  • Lorenz Schneider & Bertrand Tavin, 2015. "Seasonal Stochastic Volatility and Correlation together with the Samuelson Effect in Commodity Futures Markets," Papers 1506.05911, arXiv.org.
  • Handle: RePEc:arx:papers:1506.05911
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1506.05911
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    3. Yoosef Maghsoodi, 1996. "Solution Of The Extended Cir Term Structure And Bond Option Valuation," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 89-109, January.
    4. Lorenz Schneider & Bertrand Tavin, 2014. "From the Samuelson Volatility Effect to a Samuelson Correlation Effect: Evidence from Crude Oil Calendar Spread Options," Papers 1401.7913, arXiv.org, revised Feb 2015.
    5. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    6. Bakshi, Gurdip & Madan, Dilip, 2000. "Spanning and derivative-security valuation," Journal of Financial Economics, Elsevier, vol. 55(2), pages 205-238, February.
    7. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    8. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    9. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Hélyette Geman & Vu-Nhat Nguyen, 2005. "Soybean Inventory and Forward Curve Dynamics," Management Science, INFORMS, vol. 51(7), pages 1076-1091, July.
    12. repec:dau:papers:123456789/1937 is not listed on IDEAS
    13. repec:dau:papers:123456789/1433 is not listed on IDEAS
    14. Les Clewlow & Chris Strickland, 1999. "A Multi-Factor Model for Energy Derivatives," Research Paper Series 28, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orcan Ogetbil & Bernhard Hientzsch, 2022. "A Flexible Commodity Skew Model with Maturity Effects," Papers 2212.07972, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenz Schneider & Bertrand Tavin, 2018. "Seasonal Stochastic Volatility and the Samuelson Effect in Agricultural Futures Markets," Papers 1802.01393, arXiv.org, revised Nov 2018.
    2. L. Schneider & B. Tavin, 2024. "Seasonal volatility in agricultural markets: modelling and empirical investigations," Annals of Operations Research, Springer, vol. 334(1), pages 7-58, March.
    3. Carme Frau & Viviana Fanelli, 2024. "Seasonality in commodity prices: new approaches for pricing plain vanilla options," Annals of Operations Research, Springer, vol. 336(1), pages 1089-1131, May.
    4. Leif Andersen, 2010. "Markov models for commodity futures: theory and practice," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 831-854.
    5. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, February.
    6. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    7. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    8. Ioannis Kyriakou & Nikos K. Nomikos & Nikos C. Papapostolou & Panos K. Pouliasis, 2016. "Affine†Structure Models and the Pricing of Energy Commodity Derivatives," European Financial Management, European Financial Management Association, vol. 22(5), pages 853-881, November.
    9. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    10. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    11. Peng, Qidi & Schellhorn, Henry, 2018. "On the distribution of extended CIR model," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 23-29.
    12. Gudkov, Nikolay & Ignatieva, Katja, 2021. "Electricity price modelling with stochastic volatility and jumps: An empirical investigation," Energy Economics, Elsevier, vol. 98(C).
    13. repec:uts:finphd:41 is not listed on IDEAS
    14. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    15. Xun Li & Zhenyu Wu, 2006. "A semi-analytic method for valuing high-dimensional options on the maximum and minimum of multiple assets," Annals of Finance, Springer, vol. 2(2), pages 179-205, March.
    16. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    17. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    18. Crosby, John & Frau, Carme, 2022. "Jumps in commodity prices: New approaches for pricing plain vanilla options," Energy Economics, Elsevier, vol. 114(C).
    19. Schneider, Lorenz & Tavin, Bertrand, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect: An analysis of crude oil calendar spread options," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 185-202.
    20. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    21. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1506.05911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.