IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v287y2020i2d10.1007_s10479-019-03309-9.html
   My bibliography  Save this article

Stability, efficiency, and contentedness of social storage networks

Author

Listed:
  • Pramod C. Mane

    (Indian Institute of Technology Indore)

  • Kapil Ahuja

    (Indian Institute of Technology Indore)

  • Nagarajan Krishnamurthy

    (Indian Institute of Management Indore)

Abstract

Social storage systems are a good alternative to existing data backup systems of local, centralized, and P2P backup. Till date, researchers have mostly focussed on either building such systems by using existing underlying social networks (exogenously built) or on studying quality of service related issues. In this paper, we look at two untouched aspects of social storage systems. One aspect involves modelling social storage as an endogenous social network, where agents themselves decide with whom they want to build data backup relation, which is more intuitive than exogenous social networks. The second aspect involves studying the stability of social storage systems, which would help reduce maintenance costs and further, help build efficient as well as contented networks. We have a four fold contribution that covers the above two aspects. We, first, model the social storage system as a strategic network formation game. We define the utility of each agent in the network under two different frameworks, one where the cost to add and maintain links is considered in the utility function and the other where budget constraints are considered. In the context of social storage and social cloud computing, these utility functions are the first of its kind, and we use them to define and analyse the social storage network game. Second, we propose the concept of bilateral stability which refines the pairwise stability concept defined by Jackson and Wolinsky (J Econ Theory 71(1):44–74, 1996), by requiring mutual consent for both addition and deletion of links, as compared to mutual consent just for link addition. Mutual consent for link deletion is especially important in the social storage setting. The notion of bilateral stability subsumes the bilateral equilibrium definition of Goyal and Vega-Redondo (J Econ Theory 137(1):460–492, 2007). Third, we prove necessary and the sufficient conditions for bilateral stability of social storage networks. For symmetric social storage networks, we prove that there exists a unique neighborhood size, independent of the number of agents (for all non-trivial cases), where no pair of agents has any incentive to increase or decrease their neighborhood size. We call this neighborhood size as the stability point. Fourth, given the number of agents and other parameters, we discuss which bilaterally stable networks would evolve and also discuss which of these stable networks are efficient—that is, stable networks with maximum sum of utilities of all agents. We also discuss ways to build contented networks, where each agent achieves the maximum possible utility.

Suggested Citation

  • Pramod C. Mane & Kapil Ahuja & Nagarajan Krishnamurthy, 2020. "Stability, efficiency, and contentedness of social storage networks," Annals of Operations Research, Springer, vol. 287(2), pages 811-842, April.
  • Handle: RePEc:spr:annopr:v:287:y:2020:i:2:d:10.1007_s10479-019-03309-9
    DOI: 10.1007/s10479-019-03309-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03309-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03309-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falk Armin & Kosfeld Michael, 2012. "It's all about Connections: Evidence on Network Formation," Review of Network Economics, De Gruyter, vol. 11(3), pages 1-36, September.
    2. Dutta, Bhaskar & Ghosal, Sayantan & Ray, Debraj, 2005. "Farsighted network formation," Journal of Economic Theory, Elsevier, vol. 122(2), pages 143-164, June.
    3. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    4. Yann Bramoullé & Dunia López-Pintado & Sanjeev Goyal & Fernando Vega-Redondo, 2004. "Network formation and anti-coordination games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(1), pages 1-19, January.
    5. Furusawa, Taiji & Konishi, Hideo, 2007. "Free trade networks," Journal of International Economics, Elsevier, vol. 72(2), pages 310-335, July.
    6. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2011. "Strict Nash networks and partner heterogeneity," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 515-525, August.
    7. Jackson, Matthew O. & van den Nouweland, Anne, 2005. "Strongly stable networks," Games and Economic Behavior, Elsevier, vol. 51(2), pages 420-444, May.
    8. Paul Belleflamme & Francis Bloch, 2004. "Market sharing agreements and collusive networks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 387-411, May.
    9. Berno Buechel & Tim Hellmann, 2012. "Under-connected and over-connected networks: the role of externalities in strategic network formation," Review of Economic Design, Springer;Society for Economic Design, vol. 16(1), pages 71-87, March.
    10. Goeree, Jacob K. & Riedl, Arno & Ule, Aljaz, 2009. "In search of stars: Network formation among heterogeneous agents," Games and Economic Behavior, Elsevier, vol. 67(2), pages 445-466, November.
    11. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    12. Bloch, Francis & Dutta, Bhaskar, 2009. "Communication networks with endogenous link strength," Games and Economic Behavior, Elsevier, vol. 66(1), pages 39-56, May.
    13. Gilles, Robert P. & Sarangi, Sudipta, 2010. "Network formation under mutual consent and costly communication," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 181-185, November.
    14. Yann Bramoull? & Rachel Kranton & Martin D'Amours, 2014. "Strategic Interaction and Networks," American Economic Review, American Economic Association, vol. 104(3), pages 898-930, March.
    15. Goyal, Sanjeev & Joshi, Sumit, 2003. "Networks of collaboration in oligopoly," Games and Economic Behavior, Elsevier, vol. 43(1), pages 57-85, April.
    16. Bloch, Francis & Jackson, Matthew O., 2007. "The formation of networks with transfers among players," Journal of Economic Theory, Elsevier, vol. 133(1), pages 83-110, March.
    17. Jack Meyer, 2010. "Representing risk preferences in expected utility based decision models," Annals of Operations Research, Springer, vol. 176(1), pages 179-190, April.
    18. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    19. Venkatesh Bala & Sanjeev Goyal, 2000. "original papers : A strategic analysis of network reliability," Review of Economic Design, Springer;Society for Economic Design, vol. 5(3), pages 205-228.
    20. Venkatesh Bala & Sanjeev Goyal, 2000. "A Noncooperative Model of Network Formation," Econometrica, Econometric Society, vol. 68(5), pages 1181-1230, September.
    21. Surajit Borkotokey & Loyimee Gogoi & Sudipta Sarangi, 2014. "A Survey of Player-based and Link-based Allocation Rules for Network Games," Studies in Microeconomics, , vol. 2(1), pages 5-26, June.
    22. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2011. "Resources Flows Asymmetries in Strict Nash Networks with Partner Heterogeneity," Working Papers 1108, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    23. Jeroen Suijs & Peter Borm & Herbert Hamers & Marieke Quant & Maurice Koster, 2005. "Communication and Cooperation in Public Network Situations," Annals of Operations Research, Springer, vol. 137(1), pages 117-140, July.
    24. Sanjeev Goyal & Sumit Joshi, 2006. "Bilateralism And Free Trade," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(3), pages 749-778, August.
    25. Calvo-Armengol, Antoni, 2004. "Job contact networks," Journal of Economic Theory, Elsevier, vol. 115(1), pages 191-206, March.
    26. Lorenzo Zirulia, 2006. "Industry profit maximizing R and D networks," Economics Bulletin, AccessEcon, vol. 12(1), pages 1-6.
    27. Peitz, Martin & Waldfogel, Joel, 2012. "The Oxford Handbook of the Digital Economy," OUP Catalogue, Oxford University Press, number 9780195397840, Decembrie.
    28. Goyal, Sanjeev & Vega-Redondo, Fernando, 2007. "Structural holes in social networks," Journal of Economic Theory, Elsevier, vol. 137(1), pages 460-492, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pramod C. Mane & Nagarajan Krishnamurthy & Kapil Ahuja, 2023. "Resource availability in the social cloud: An economics perspective," Bulletin of Economic Research, Wiley Blackwell, vol. 75(2), pages 541-566, April.
    2. Pramod C. Mane & Nagarajan Krishnamurthy & Kapil Ahuja, 2021. "Resource Availability in the Social Cloud: An Economics Perspective," Papers 2102.01071, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    2. Joost Vandenbossche & Thomas Demuynck, 2013. "Network Formation with Heterogeneous Agents and Absolute Friction," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 23-45, June.
    3. Berno Buechel & Tim Hellmann, 2012. "Under-connected and over-connected networks: the role of externalities in strategic network formation," Review of Economic Design, Springer;Society for Economic Design, vol. 16(1), pages 71-87, March.
    4. Matthew O. Jackson, 2003. "A Survey of Models of Network Formation: Stability and Efficiency," Game Theory and Information 0303011, University Library of Munich, Germany.
    5. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    6. Tim Hellmann & Berno Buechel, 2009. "Under-connected and Over-connected Networks," Working Papers 2009.38, Fondazione Eni Enrico Mattei.
    7. Boris van Leeuwen & Theo Offerman & Arthur Schram, 2020. "Competition for Status Creates Superstars: an Experiment on Public Good Provision and Network Formation," Journal of the European Economic Association, European Economic Association, vol. 18(2), pages 666-707.
    8. Sanjeev Goyal, 2015. "Networks in Economics: A Perspective on the Literature," Cambridge Working Papers in Economics 1548, Faculty of Economics, University of Cambridge.
    9. Chenghong Luo & Ana Mauleon & Vincent Vannetelbosch, 2022. "Coalition-proof stable networks," Review of Economic Design, Springer;Society for Economic Design, vol. 26(2), pages 185-209, June.
    10. Olaizola Ortega, María Norma & Valenciano Llovera, Federico, 2016. "A Marginalist Model of Network Formation," IKERLANAK info:eu-repo/grantAgreeme, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    11. Jean-François Caulier & Ana Mauleon & Vincent Vannetelbosch, 2013. "Contractually stable networks," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 483-499, May.
    12. Roland Pongou & Roberto Serrano, 2009. "A Dynamic Theory of Fidelity Networks with an Application to the Spread of HIV/AIDS," Working Papers 2009-2, Brown University, Department of Economics.
    13. Péter Bayer & Ani Guerdjikova, 2020. "Optimism leads to optimality: Ambiguity in network formation," Working Papers hal-03005107, HAL.
    14. Britta Hoyer & Kris De Jaegher, 2023. "Network disruption and the common-enemy effect," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 117-155, March.
    15. Isabel Melguizo, 2023. "Group representation concerns and network formation," Bulletin of Economic Research, Wiley Blackwell, vol. 75(1), pages 151-179, January.
    16. Kinateder, Markus & Merlino, Luca Paolo, 2022. "Local public goods with weighted link formation," Games and Economic Behavior, Elsevier, vol. 132(C), pages 316-327.
    17. Möhlmeier, Philipp & Rusinowska, Agnieszka & Tanimura, Emily, 2018. "Competition for the access to and use of information in networks," Mathematical Social Sciences, Elsevier, vol. 92(C), pages 48-63.
    18. Norma Olaizola & Federico Valenciano, 2016. "From bilateral two-way to unilateral one-way flow link-formation," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(2), pages 257-278, June.
    19. Deng, Liuchun & Sun, Yufeng, 2017. "Criminal network formation and optimal detection policy: The role of cascade of detection," Journal of Economic Behavior & Organization, Elsevier, vol. 141(C), pages 43-63.
    20. Mariya Teteryatnikova & James Tremewan, 2020. "Myopic and farsighted stability in network formation games: an experimental study," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(4), pages 987-1021, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:287:y:2020:i:2:d:10.1007_s10479-019-03309-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.