IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0398.html
   My bibliography  Save this article

Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries

Author

Listed:
  • Fantazzini, Dean

    (Moscow School of Economics, Moscow State University, Moscow;)

Abstract

The ability of Google Trends data to forecast the number of new daily cases and deaths of COVID-19 is examined using a dataset of 158 countries. The analysis includes the computations of lag correlations between confirmed cases and Google data, Granger causality tests, and an out-of-sample forecasting exercise with 18 competing models with a forecast horizon of 14 days ahead. This evidence shows that Google-augmented models outperform the competing models for most of the countries. This is significant because Google data can complement epidemiological models during difficult times like the ongoing COVID-19 pandemic, when official statistics maybe not fully reliable and/or published with a delay. Moreover, real-time tracking with online-data is one of the instruments that can be used to keep the situation under control when national lockdowns are lifted and economies gradually reopen.

Suggested Citation

  • Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
  • Handle: RePEc:ris:apltrx:0398
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2020_59_033-054.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    2. Stock, James H. & Watson, Mark W., 1989. "Interpreting the evidence on money-income causality," Journal of Econometrics, Elsevier, vol. 40(1), pages 161-181, January.
    3. Dean Fantazzini, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-27, November.
    4. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(1), pages 95-131, April.
    5. Niels Haldrup & Peter Lildholdt, 2002. "On the Robustness of Unit Root Tests in the Presence of Double Unit Roots," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(2), pages 155-171, March.
    6. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    7. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    8. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    9. Yue Teng & Dehua Bi & Guigang Xie & Yuan Jin & Yong Huang & Baihan Lin & Xiaoping An & Dan Feng & Yigang Tong, 2017. "Dynamic Forecasting of Zika Epidemics Using Google Trends," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-10, January.
    10. R. Scott Hacker & Abdulnasser Hatemi-J, 2006. "Tests for causality between integrated variables using asymptotic and bootstrap distributions: theory and application," Applied Economics, Taylor & Francis Journals, vol. 38(13), pages 1489-1500.
    11. Martin S. Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2020. "The Macroeconomics of Epidemics," NBER Working Papers 26882, National Bureau of Economic Research, Inc.
    12. Andrea Freyer Dugas & Mehdi Jalalpour & Yulia Gel & Scott Levin & Fred Torcaso & Takeru Igusa & Richard E Rothman, 2013. "Influenza Forecasting with Google Flu Trends," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    13. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    14. Cecilia de Almeida Marques-Toledo & Carolin Marlen Degener & Livia Vinhal & Giovanini Coelho & Wagner Meira & Claudia Torres Codeço & Mauro Martins Teixeira, 2017. "Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-20, July.
    15. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    16. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    17. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    18. Mauro Costantini & Claudio Lupi, 2013. "A Simple Panel-CADF Test for Unit Roots," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 276-296, April.
    19. Mauricio Santillana & André T Nguyen & Mark Dredze & Michael J Paul & Elaine O Nsoesie & John S Brownstein, 2015. "Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-15, October.
    20. Bernard Cazelles & Clara Champagne & Joseph Dureau, 2018. "Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-26, August.
    21. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    22. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    23. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    24. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    25. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    26. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    27. David A Broniatowski & Michael J Paul & Mark Dredze, 2013. "National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    28. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    29. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    30. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    31. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Covid-19 > Health > Measurement

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schneider, Tim & Meub, Lukas & Bizer, Kilian, 2021. "Consumer information in a market for expert services: Experimental evidence," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, September.
    2. Lin, Boqiang & Wesseh Jr., Presley K., 2014. "Energy consumption and economic growth in South Africa reexamined: A nonparametric testing apporach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 840-850.
    3. Shahbaz, Muhammad & Ferrer, Román & Hussain Shahzad, Syed Jawad & Haouas, Ilham, 2017. "Is the tourism-economic growth nexus time-varying? Bootstrap rolling-window causality analysis for the top ten tourist destinations," MPRA Paper 82713, University Library of Munich, Germany, revised 04 Nov 2017.
    4. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    5. Lach, Łukasz, 2010. "Fixed capital and long run economic growth: evidence from Poland," MPRA Paper 52280, University Library of Munich, Germany.
    6. Guillaume Guex & Sébastien Guex, 2018. "Debt, economic growth, and interest rates: an empirical study of the Swiss case, presenting a new long-term dataset: 1894–2014," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 154(1), pages 1-13, December.
    7. Gurgul, Henryk & Lach, Łukasz, 2010. "The causal link between Polish stock market and key macroeconomic aggregates," MPRA Paper 52250, University Library of Munich, Germany.
    8. Yildirim, Ertugrul & Aslan, Alper, 2012. "Energy consumption and economic growth nexus for 17 highly developed OECD countries: Further evidence based on bootstrap-corrected causality tests," Energy Policy, Elsevier, vol. 51(C), pages 985-993.
    9. Henryk Gurgul & Łukasz Lach & Roland Mestel, 2012. "The relationship between budgetary expenditure and economic growth in Poland," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 161-182, March.
    10. Gurgul, Henryk & Lach, Łukasz, 2012. "The electricity consumption versus economic growth of the Polish economy," Energy Economics, Elsevier, vol. 34(2), pages 500-510.
    11. Gurgul, Henryk & Lach, Łukasz, 2012. "The association between stock market and exchange rates for advanced and emerging markets – A case study of the Swiss and Polish economies," MPRA Paper 52238, University Library of Munich, Germany.
    12. Lukasz Lach, 2010. "Application of Bootstrap Methods in Investigation of Size of the Granger Causality Test for Integrated VAR Systems," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 8(2), pages 167-186.
    13. Gurgul, Henryk & Lach, Łukasz, 2011. "Causality analysis between public expenditure and economic growth of Polish economy in last decade," MPRA Paper 52281, University Library of Munich, Germany.
    14. Henryk Gurgul & Lukasz Lach, 2011. "The interdependence between energy consumption and economic growth in the Polish economy in the last decade," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 9, pages 25-48.
    15. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    16. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    17. Emirmahmutoglu, Furkan & Kose, Nezir, 2011. "Testing for Granger causality in heterogeneous mixed panels," Economic Modelling, Elsevier, vol. 28(3), pages 870-876, May.
    18. Di Iorio, Francesca & Triacca, Umberto, 2013. "Testing for Granger non-causality using the autoregressive metric," Economic Modelling, Elsevier, vol. 33(C), pages 120-125.
    19. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    20. Kum, Hakan & Ocal, Oguz & Aslan, Alper, 2012. "The relationship among natural gas energy consumption, capital and economic growth: Bootstrap-corrected causality tests from G-7 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2361-2365.

    More about this item

    Keywords

    Covid-19; Google Trends; VAR; ARIMA; ARIMA-X; ETS; LASSO; SIR model.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • I19 - Health, Education, and Welfare - - Health - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0398. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.