IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296501.html
   My bibliography  Save this article

Dynamic asymmetric spillovers and connectedness between Chinese sectoral commodities and industry stock markets

Author

Listed:
  • Yu Lou
  • Chao Xiao
  • Yi Lian

Abstract

This study investigates the dynamic and asymmetric propagation of return spillovers between sectoral commodities and industry stock markets in China. Using a daily dataset from February 2007 to July 2022, we employ a time-varying vector autoregressive (TVP-VAR) model to examine the asymmetric return spillovers and dynamic connectedness across sectors. The results reveal significant time-varying spillovers among these sectors, with the industry stocks acting as the primary transmitter of information to the commodity market. Materials, energy, and industrials stock sectors contribute significantly to these spillovers due to their close ties to commodity production and processing. The study also identifies significant asymmetric spillovers with bad returns dominating, influenced by major economic and political events such as the 2008 global financial crisis, the 2015 Chinese stock market crisis, the COVID-19 pandemic, and the Russia-Ukraine war. Furthermore, our study highlights the unique dynamics within the Chinese market, where net information spillovers from the stock market to commodities drive the financialization process, which differs from the bidirectional commodity financialization observed in other markets. Finally, portfolio analysis reveals that the minimum connectedness portfolio outperforms other approaches and effectively reflects asymmetries. Understanding these dynamics and sectoral heterogeneities has important implications for risk management, policy development, and trading practices.

Suggested Citation

  • Yu Lou & Chao Xiao & Yi Lian, 2024. "Dynamic asymmetric spillovers and connectedness between Chinese sectoral commodities and industry stock markets," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-39, January.
  • Handle: RePEc:plo:pone00:0296501
    DOI: 10.1371/journal.pone.0296501
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296501
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296501&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jozef Baruník & Evžen KoÄ enda b,a & Lukáš Vácha, 2016. "Volatility Spillovers Across Petroleum Markets," The Energy Journal, , vol. 37(1), pages 136-158, January.
    2. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Creti, Anna & Joëts, Marc & Mignon, Valérie, 2013. "On the links between stock and commodity markets' volatility," Energy Economics, Elsevier, vol. 37(C), pages 16-28.
    5. repec:dau:papers:123456789/14980 is not listed on IDEAS
    6. Mensi, Walid & Beljid, Makram & Boubaker, Adel & Managi, Shunsuke, 2013. "Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold," Economic Modelling, Elsevier, vol. 32(C), pages 15-22.
    7. Lin, Boqiang & Wesseh, Presley K. & Appiah, Michael Owusu, 2014. "Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness," Energy Economics, Elsevier, vol. 42(C), pages 172-182.
    8. Xu, Weiju & Ma, Feng & Chen, Wang & Zhang, Bing, 2019. "Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States," Energy Economics, Elsevier, vol. 80(C), pages 310-320.
    9. Muhammad Abubakr Naeem & Saqib Farid & Safwan Mohd Nor & Syed Jawad Hussain Shahzad, 2021. "Spillover and Drivers of Uncertainty among Oil and Commodity Markets," Mathematics, MDPI, vol. 9(4), pages 1-26, February.
    10. Jozef Barunk & Evzen KoÄ enda & Lukáš Váchaa, 2015. "Volatility Spillovers Across Petroleum Markets," The Energy Journal, , vol. 36(3), pages 309-330, July.
    11. Broadstock, David C. & Filis, George, 2014. "Oil price shocks and stock market returns: New evidence from the United States and China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 417-433.
    12. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    13. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2015. "The impact of oil price shocks on the stock market return and volatility relationship," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 41-54.
    14. Degiannakis, Stavros & Filis, George & Floros, Christos, 2013. "Oil and stock returns: Evidence from European industrial sector indices in a time-varying environment," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 175-191.
    15. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    16. Degiannakis, Stavros & Filis, George & Floros, Christos, 2013. "Oil and stock price returns: Evidence from European industrial sector indices in a time-varying environment," MPRA Paper 80495, University Library of Munich, Germany.
    17. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    18. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    19. Ke Tang & Wei Xiong, 2012. "Index Investment and the Financialization of Commodities," Financial Analysts Journal, Taylor & Francis Journals, vol. 68(6), pages 54-74, November.
    20. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    21. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    22. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    23. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    24. Li, Xiafei & Wei, Yu, 2018. "The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method," Energy Economics, Elsevier, vol. 74(C), pages 565-581.
    25. Farid, Saqib & Kayani, Ghulam Mujtaba & Naeem, Muhammad Abubakr & Shahzad, Syed Jawad Hussain, 2021. "Intraday volatility transmission among precious metals, energy and stocks during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 72(C).
    26. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    27. Babalos, Vassilios & Balcilar, Mehmet, 2017. "Does institutional trading drive commodities prices away from their fundamentals: Evidence from a nonparametric causality-in-quantiles test," Finance Research Letters, Elsevier, vol. 21(C), pages 126-131.
    28. Yang, Baochen & Pu, Yingjian & Su, Yunpeng, 2020. "The financialization of Chinese commodity markets," Finance Research Letters, Elsevier, vol. 34(C).
    29. Jian Yang & Zheng Li & Hong Miao, 2021. "Volatility spillovers in commodity futures markets: A network approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1959-1987, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    2. Al-Fayoumi, Nedal & Bouri, Elie & Abuzayed, Bana, 2023. "Decomposed oil price shocks and GCC stock market sector returns and volatility," Energy Economics, Elsevier, vol. 126(C).
    3. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    4. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    5. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    6. Adeel Riaz & Assad Ullah & Li Xingong, 2024. "Does trade policy uncertainty in China and USA matter for key financial markets?," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-30, April.
    7. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    8. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & de Gracia, Fernando Perez, 2023. "Dynamic connectedness among the implied volatilities of oil prices and financial assets: New evidence of the COVID-19 pandemic," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 114-123.
    9. Cocca, Teodoro & Gabauer, David & Pomberger, Stefan, 2024. "Clean energy market connectedness and investment strategies: New evidence from DCC-GARCH R2 decomposed connectedness measures," Energy Economics, Elsevier, vol. 136(C).
    10. Juncal Cunado & David Gabauer & Rangan Gupta & Chien-Chiang Lee, 2025. "On the propagation mechanism of international real interest rate spillovers: evidence from more than 200 years of data," Applied Economics, Taylor & Francis Journals, vol. 57(7), pages 790-804, February.
    11. Shah, Adil Ahmad & Dar, Arif Billah, 2021. "Exploring diversification opportunities across commodities and financial markets: Evidence from time-frequency based spillovers," Resources Policy, Elsevier, vol. 74(C).
    12. Śmiech, Sławomir & Papież, Monika & Fijorek, Kamil & Dąbrowski, Marek A., 2019. "What drives food price volatility? Evidence based on a generalized VAR approach applied to the food, financial and energy markets," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-32.
    13. Naeem, Muhammad Abubakr & Chatziantoniou, Ioannis & Gabauer, David & Karim, Sitara, 2024. "Measuring the G20 stock market return transmission mechanism: Evidence from the R2 connectedness approach," International Review of Financial Analysis, Elsevier, vol. 91(C).
    14. Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
    15. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Gabauer, David & Dwumfour, Richard Adjei, 2022. "Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies," Global Finance Journal, Elsevier, vol. 51(C).
    16. Silva, Thiago Christiano & Braz, Tercio & Tabak, Benjamin Miranda, 2024. "Mapping the landscape of energy markets research: A bibliometric analysis and predictive assessment using machine learning," Energy Economics, Elsevier, vol. 136(C).
    17. Chatziantoniou, Ioannis & Gabauer, David & Perez de Gracia, Fernando, 2022. "Tail risk connectedness in the refined petroleum market: A first look at the impact of the COVID-19 pandemic," Energy Economics, Elsevier, vol. 111(C).
    18. Mishra, Aswini Kumar & Anand K, Kamesh & Venkatasai Kappagantula, Akhil, 2025. "Unveiling asymmetric return spillovers with portfolio implications among Indian stock sectors during Covid-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
    19. Kočenda, Evžen & Moravcová, Michala, 2024. "Frequency volatility connectedness and portfolio hedging of U.S. energy commodities," Research in International Business and Finance, Elsevier, vol. 69(C).
    20. Restrepo, Natalia & Uribe, Jorge M. & Manotas, Diego, 2018. "Financial risk network architecture of energy firms," Applied Energy, Elsevier, vol. 215(C), pages 630-642.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.