IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0033785.html
   My bibliography  Save this article

Quantifying Social Influence in an Online Cultural Market

Author

Listed:
  • Coco Krumme
  • Manuel Cebrian
  • Galen Pickard
  • Sandy Pentland

Abstract

We revisit experimental data from an online cultural market in which 14,000 users interact to download songs, and develop a simple model that can explain seemingly complex outcomes. Our results suggest that individual behavior is characterized by a two-step process–the decision to sample and the decision to download a song. Contrary to conventional wisdom, social influence is material to the first step only. The model also identifies the role of placement in mediating social signals, and suggests that in this market with anonymous feedback cues, social influence serves an informational rather than normative role.

Suggested Citation

  • Coco Krumme & Manuel Cebrian & Galen Pickard & Sandy Pentland, 2012. "Quantifying Social Influence in an Online Cultural Market," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-6, May.
  • Handle: RePEc:plo:pone00:0033785
    DOI: 10.1371/journal.pone.0033785
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033785
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0033785&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0033785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    2. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
    3. Christian Borghesi & Jean-Philippe Bouchaud, 2007. "Of songs and men: a model for multiple choice with herding," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(4), pages 557-568, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bask, Miia & Bask, Mikael, 2014. "Social influence and the Matthew mechanism: The case of an artificial cultural market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 113-119.
    2. Andrés Abeliuk & Gerardo Berbeglia & Manuel Cebrian & Pascal Van Hentenryck, 2016. "Assortment optimization under a multinomial logit model with position bias and social influence," 4OR, Springer, vol. 14(1), pages 57-75, March.
    3. Rui Chen & Hai Jiang, 2020. "Assortment optimization with position effects under the nested logit model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 21-33, February.
    4. Morgan R Frank & Manuel Cebrian & Galen Pickard & Iyad Rahwan, 2017. "Validating Bayesian truth serum in large-scale online human experiments," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-13, May.
    5. Xi, Ning & Zhang, Zi-Ke & Zhang, Yi-Cheng & Ge, Zehui & She, Li & Zhang, Kui, 2014. "Cultural evolution: The case of babies’ first names," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 139-144.
    6. Jerker Denrell & Gaël Le Mens, 2017. "Information Sampling, Belief Synchronization, and Collective Illusions," Management Science, INFORMS, vol. 63(2), pages 528-547, February.
    7. Berbeglia, Franco & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2021. "Market segmentation in online platforms," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1025-1041.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Hedlund & Carlos Oyarzun, 2018. "Imitation in heterogeneous populations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(4), pages 937-973, June.
    2. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    3. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    4. Jonathan E. Alevy & Michael S. Haigh & John List, 2006. "Information Cascades: Evidence from An Experiment with Financial Market Professionals," NBER Working Papers 12767, National Bureau of Economic Research, Inc.
    5. Marco Cipriani & Antonio Guarino, 2009. "Herd Behavior in Financial Markets: An Experiment with Financial Market Professionals," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 206-233, March.
    6. Stephanie De Mel & Kaivan Munshi & Soenje Reiche & Hamid Sabourian, 2021. "Herding with Heterogeneous Ability: An Application to Organ Transplantation," Cowles Foundation Discussion Papers 2308, Cowles Foundation for Research in Economics, Yale University.
    7. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," PSE Working Papers halshs-03735680, HAL.
    8. Liangfei Qiu & Arunima Chhikara & Asoo Vakharia, 2021. "Multidimensional Observational Learning in Social Networks: Theory and Experimental Evidence," Information Systems Research, INFORMS, vol. 32(3), pages 876-894, September.
    9. Chan, C.S. Richard & Parhankangas, Annaleena & Sahaym, Arvin & Oo, Pyayt, 2020. "Bellwether and the herd? Unpacking the u-shaped relationship between prior funding and subsequent contributions in reward-based crowdfunding," Journal of Business Venturing, Elsevier, vol. 35(2).
    10. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    11. Song, Yangbo, 2016. "Social learning with endogenous observation," Journal of Economic Theory, Elsevier, vol. 166(C), pages 324-333.
    12. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    13. Sobel, Joel, 2000. "Economists' Models of Learning," Journal of Economic Theory, Elsevier, vol. 94(2), pages 241-261, October.
    14. Ali, S. Nageeb, 2018. "Herding with costly information," Journal of Economic Theory, Elsevier, vol. 175(C), pages 713-729.
    15. Thomas Stebro & Manuel Fernnndez Sierra & Stefano Lovo & Nir Vulkan, 2017. "Herding in Equity Crowdfunding," Working Papers hal-01970724, HAL.
    16. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    17. Penczynski, Stefan P., 2017. "The nature of social learning: Experimental evidence," European Economic Review, Elsevier, vol. 94(C), pages 148-165.
    18. Tom Wilkening, 2009. "The Informational Properties of Institutions: An Experimental Study of Persistence in Markets with Certification," Department of Economics - Working Papers Series 1087, The University of Melbourne.
    19. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    20. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0033785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.