Credit default prediction modeling: an application of support vector machine
Author
Abstract
Suggested Citation
DOI: 10.1057/s41283-017-0016-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
- Schaefer, Stephen M. & Strebulaev, Ilya A., 2008. "Structural models of credit risk are useful: Evidence from hedge ratios on corporate bonds," Journal of Financial Economics, Elsevier, vol. 90(1), pages 1-19, October.
- Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
- Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
- Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
- Gestel, Tony Van & Baesens, Bart & Suykens, Johan A.K. & Van den Poel, Dirk & Baestaens, Dirk-Emma & Willekens, Marleen, 2006.
"Bayesian kernel based classification for financial distress detection,"
European Journal of Operational Research, Elsevier, vol. 172(3), pages 979-1003, August.
- T. Van Gestel & B. Baesens & J. A.K. Suykens & D. Van Den Poel & D.-E. Baestaens & Bm. Willekens, 2004. "Bayesian Kernel-Based Classification for Financial Distress Detection," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/247, Ghent University, Faculty of Economics and Business Administration.
- Sudhir Nanda & Parag Pendharkar, 2001. "Linear models for minimizing misclassification costs in bankruptcy prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(3), pages 155-168, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fiza Qureshi & Ali M. Kutan & Habib Hussain Khan & Saba Qureshi, 2019. "Equity fund flows, market returns, and market risk: evidence from China," Risk Management, Palgrave Macmillan, vol. 21(1), pages 48-71, March.
- Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Shi, Baofeng & Zhao, Xue & Wu, Bi & Dong, Yizhe, 2019. "Credit rating and microfinance lending decisions based on loss given default (LGD)," Finance Research Letters, Elsevier, vol. 30(C), pages 124-129.
- Bai, Chunguang & Shi, Baofeng & Liu, Feng & Sarkis, Joseph, 2019. "Banking credit worthiness: Evaluating the complex relationships," Omega, Elsevier, vol. 83(C), pages 26-38.
- Jiaming Liu & Xuemei Zhang & Haitao Xiong, 2024. "Credit risk prediction based on causal machine learning: Bayesian network learning, default inference, and interpretation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1625-1660, August.
- Belanes, Amel & Saâdaoui, Foued & Abedin, Mohammad Zoynul, 2024. "Potential diversification benefits: A comparative study of Islamic and conventional stock market indexes," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Abisola Akinjole & Olamilekan Shobayo & Jumoke Popoola & Obinna Okoyeigbo & Bayode Ogunleye, 2024. "Ensemble-Based Machine Learning Algorithm for Loan Default Risk Prediction," Mathematics, MDPI, vol. 12(21), pages 1-32, October.
- Rambod Rahmani & Marco Parola & Mario G. C. A. Cimino, 2024. "A machine learning workflow to address credit default prediction," Papers 2403.03785, arXiv.org.
- Mohammad S. Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib, 2022. "Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3713-3729, July.
- Codruț-Florin Ivașcu, 2024. "Understanding Dividend Puzzle Using Machine Learning," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 161-179, July.
- Maisa Cardoso Aniceto & Flavio Barboza & Herbert Kimura, 2020. "Machine learning predictivity applied to consumer creditworthiness," Future Business Journal, Springer, vol. 6(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
- Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
- Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Li, Hui & Sun, Jie, 2012. "Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples – Evidence from the Chinese hotel industry," Tourism Management, Elsevier, vol. 33(3), pages 622-634.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022.
"Artificial intelligence and machine learning in finance: A bibliometric review,"
Research in International Business and Finance, Elsevier, vol. 61(C).
- Shamima Ahmed & Muneer Alshater & Anis El Ammari & Helmi Hammami, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Post-Print hal-03697290, HAL.
- Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
- Magali Costa & Inês Lisboa & Ana Gameiro, 2022. "Is the Financial Report Quality Important in the Default Prediction? SME Portuguese Construction Sector Evidence," Risks, MDPI, vol. 10(5), pages 1-24, May.
- Zhijian (James) Huang & Yuchen Luo, 2016. "Revisiting Structural Modeling of Credit Risk—Evidence from the Credit Default Swap (CDS) Market," JRFM, MDPI, vol. 9(2), pages 1-20, May.
- Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
- Christopher L. Culp & Yoshio Nozawa & Pietro Veronesi, 2014. "Option-Based Credit Spreads," NBER Working Papers 20776, National Bureau of Economic Research, Inc.
- Xuanjuan Chen & Jing-Zhi Huang & Zhenzhen Sun & Tong Yao & Tong Yu, 2020. "Liquidity Premium in the Eye of the Beholder: An Analysis of the Clientele Effect in the Corporate Bond Market," Management Science, INFORMS, vol. 66(2), pages 932-957, February.
- Lotfaliei, Babak, 2018. "Zero leverage and the value in waiting to have debt," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 335-349.
- William Gornall & Ilya A. Strebulaev, 2013. "Financing as a Supply Chain: The Capital Structure of Banks and Borrowers," NBER Working Papers 19633, National Bureau of Economic Research, Inc.
- Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
- Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020.
"Credit scoring by incorporating dynamic networked information,"
European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
- Yibei Li & Ximei Wang & Boualem Djehiche & Xiaoming Hu, 2019. "Credit Scoring by Incorporating Dynamic Networked Information," Papers 1905.11795, arXiv.org, revised Oct 2019.
- Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
- Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
- Campa, Domenico & Camacho-Miñano, María-del-Mar, 2015. "The impact of SME’s pre-bankruptcy financial distress on earnings management tools," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 222-234.
- Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
More about this item
Keywords
Credit default prediction; Support vector machine; Performance measures;All these keywords.
JEL classification:
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:risman:v:19:y:2017:i:2:d:10.1057_s41283-017-0016-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.