IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v347y2025i2d10.1007_s10479-024-06033-1.html
   My bibliography  Save this article

Toward interpretable machine learning: evaluating models of heterogeneous predictions

Author

Listed:
  • Ruixun Zhang

    (Peking University
    Peking University
    Peking University
    Peking University)

Abstract

AI and machine learning have made significant progress in the past decade, powering many applications in FinTech and beyond. But few machine learning models, especially deep learning models, are interpretable by humans, creating challenges for risk management and model improvements. Here, we propose a simple yet powerful framework to evaluate and interpret any black-box model with binary outcomes and explanatory variables, and heterogeneous relationships between the two. Our new metric, the signal success share (SSS) cross-entropy loss, measures how well the model captures the relationship along any feature or dimension, thereby providing actionable guidance on model improvements. Simulations demonstrate that our metric works for heterogeneous and nonlinear predictions, and distinguishes itself from traditional loss functions in evaluating model interpretability. We apply the methodology to an example of predicting loan defaults with real data. Our framework is more broadly applicable to a wide range of problems in financial and information technology.

Suggested Citation

  • Ruixun Zhang, 2025. "Toward interpretable machine learning: evaluating models of heterogeneous predictions," Annals of Operations Research, Springer, vol. 347(2), pages 867-887, April.
  • Handle: RePEc:spr:annopr:v:347:y:2025:i:2:d:10.1007_s10479-024-06033-1
    DOI: 10.1007/s10479-024-06033-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06033-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06033-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Stefano Giglio & Bryan Kelly & Dacheng Xiu, 2022. "Factor Models, Machine Learning, and Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 337-368, November.
    3. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    4. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    5. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    6. Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    7. Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
    8. John Y. Campbell & João F. Cocco, 2015. "A Model of Mortgage Default," Journal of Finance, American Finance Association, vol. 70(4), pages 1495-1554, August.
    9. Khandani, Amir E. & Lo, Andrew W. & Merton, Robert C., 2013. "Systemic risk and the refinancing ratchet effect," Journal of Financial Economics, Elsevier, vol. 108(1), pages 29-45.
    10. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    11. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    12. Fahmida E. Moula & Chi Guotai & Mohammad Zoynul Abedin, 2017. "Credit default prediction modeling: an application of support vector machine," Risk Management, Palgrave Macmillan, vol. 19(2), pages 158-187, May.
    13. Keys, Benjamin J. & Pope, Devin G. & Pope, Jaren C., 2016. "Failure to refinance," Journal of Financial Economics, Elsevier, vol. 122(3), pages 482-499.
    14. James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
    15. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    16. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    17. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    18. Campbell, Tim S & Dietrich, J Kimball, 1983. "The Determinants of Default on Insured Conventional Residential Mortgage Loans," Journal of Finance, American Finance Association, vol. 38(5), pages 1569-1581, December.
    19. J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    2. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    3. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    4. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    5. Jermain C. Kaminski & Christian Hopp, 2020. "Predicting outcomes in crowdfunding campaigns with textual, visual, and linguistic signals," Small Business Economics, Springer, vol. 55(3), pages 627-649, October.
    6. Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
    7. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    8. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    9. Zhengyong Jiang & Jeyan Thiayagalingam & Jionglong Su & Jinjun Liang, 2023. "CAD: Clustering And Deep Reinforcement Learning Based Multi-Period Portfolio Management Strategy," Papers 2310.01319, arXiv.org.
    10. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    11. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    12. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    13. Jinghai He & Cheng Hua & Chunyang Zhou & Zeyu Zheng, 2025. "Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information," Papers 2501.17992, arXiv.org.
    14. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    15. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    16. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
    17. Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
    18. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    19. Weijia Peng & Chun Yao, 2023. "Sector-level equity returns predictability with machine learning and market contagion measure," Empirical Economics, Springer, vol. 65(4), pages 1761-1798, October.
    20. Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:347:y:2025:i:2:d:10.1007_s10479-024-06033-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.