IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3739-d272288.html
   My bibliography  Save this article

A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR

Author

Listed:
  • Bo Hu

    (Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China)

  • Jiaxi Li

    (Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China)

  • Shuang Li

    (Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China)

  • Jie Yang

    (Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China)

Abstract

Deep reinforcement learning (DRL), which excels at solving a wide variety of Atari and board games, is an area of machine learning that combines the deep learning approach and reinforcement learning (RL). However, to the authors’ best knowledge, there seem to be few studies that apply the latest DRL algorithms on real-world powertrain control problems. If there are any, the requirement of classical model-free DRL algorithms typically for a large number of random exploration in order to realize good control performance makes it almost impossible to implement directly on a real plant. Unlike most of the other DRL studies, whose control strategies can only be trained in a simulation environment—especially when a control strategy has to be learned from scratch—in this study, a hybrid end-to-end control strategy combining one of the latest DRL approaches—i.e., a dueling deep Q-network and traditional Proportion Integration Differentiation (PID) controller—is built, assuming no fidelity simulation model exists. Taking the boost control of a diesel engine with a variable geometry turbocharger (VGT) and cooled (exhaust gas recirculation) EGR as an example, under the common driving cycle, the integral absolute error (IAE) values with the proposed algorithm are improved by 20.66% and 9.7% respectively for the control performance and generality index, compared with a fine-tuned PID benchmark. In addition, the proposed method can also improve system adaptiveness by adding another redundant control module. This makes it attractive to real plant control problems whose simulation models do not exist, and whose environment may change over time.

Suggested Citation

  • Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3739-:d:272288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    2. Guang Yang & Feng Zhang & Cheng Gong & Shiwen Zhang, 2019. "Application of a Deep Deterministic Policy Gradient Algorithm for Energy-Aimed Timetable Rescheduling Problem," Energies, MDPI, vol. 12(18), pages 1-19, September.
    3. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    4. Xiaoya Shang & Zhigang Li & Tianyao Ji & P. Z. Wu & Qinghua Wu, 2017. "Online Area Load Modeling in Power Systems Using Enhanced Reinforcement Learning," Energies, MDPI, vol. 10(11), pages 1-17, November.
    5. Brida V. Mbuwir & Frederik Ruelens & Fred Spiessens & Geert Deconinck, 2017. "Battery Energy Management in a Microgrid Using Batch Reinforcement Learning," Energies, MDPI, vol. 10(11), pages 1-19, November.
    6. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    7. Feneley, Adam J. & Pesiridis, Apostolos & Andwari, Amin Mahmoudzadeh, 2017. "Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 959-975.
    8. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    9. Teng Liu & Yuan Zou & Dexing Liu & Fengchun Sun, 2015. "Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 8(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Kozak & Paweł Mazuro & Andrzej Teodorczyk, 2021. "Numerical Simulation of Two-Stage Variable Geometry Turbine," Energies, MDPI, vol. 14(17), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    2. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    4. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    5. Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
    6. Shijun Wang & Baocheng Zhu & Chen Li & Mingzhe Wu & James Zhang & Wei Chu & Yuan Qi, 2020. "Riemannian Proximal Policy Optimization," Computer and Information Science, Canadian Center of Science and Education, vol. 13(3), pages 1-93, August.
    7. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    8. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    9. Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
    10. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    11. Lai, Jianfa & Weng, Lin-Chen & Peng, Xiaoling & Fang, Kai-Tai, 2022. "Construction of symmetric orthogonal designs with deep Q-network and orthogonal complementary design," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    12. Ricardo S. Alonso & Inés Sittón-Candanedo & Roberto Casado-Vara & Javier Prieto & Juan M. Corchado, 2020. "Deep Reinforcement Learning for the Management of Software-Defined Networks and Network Function Virtualization in an Edge-IoT Architecture," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    13. Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
    14. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.
    15. De Moor, Bram J. & Gijsbrechts, Joren & Boute, Robert N., 2022. "Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management," European Journal of Operational Research, Elsevier, vol. 301(2), pages 535-545.
    16. Christopher R. Madan, 2020. "Considerations for Comparing Video Game AI Agents with Humans," Challenges, MDPI, vol. 11(2), pages 1-12, August.
    17. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    18. Matt Taddy, 2018. "The Technological Elements of Artificial Intelligence," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 61-87, National Bureau of Economic Research, Inc.
    19. Guan, Xiaoshu & Sun, Huabin & Hou, Rongrong & Xu, Yang & Bao, Yuequan & Li, Hui, 2023. "A deep reinforcement learning method for structural dominant failure modes searching based on self-play strategy," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    20. Jermain C. Kaminski & Christian Hopp, 2020. "Predicting outcomes in crowdfunding campaigns with textual, visual, and linguistic signals," Small Business Economics, Springer, vol. 55(3), pages 627-649, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3739-:d:272288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.