IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v74y2025ics0275531924005154.html
   My bibliography  Save this article

Class imbalance Bayesian model averaging for consumer loan default prediction: The role of soft credit information

Author

Listed:
  • Weng, Futian
  • Zhu, Miao
  • Buckle, Mike
  • Hajek, Petr
  • Abedin, Mohammad Zoynul

Abstract

This study investigates the predictive value of soft information for consumer loan defaults. We propose a novel framework to address class imbalance by utilizing the concept of Bayesian model averaging. Specifically, we assign unequal weights to machine learning sub-models that incorporate different combinations of variables, thereby creating an accurate and robust model for predicting consumer loan defaults. Additionally, this framework incorporates the Shapley additive explanations (SHAP) method to estimate individual contributions and employs the Bayesian information criterion to assess the variable contributions of the sub-models. We validate the effectiveness and robustness of our proposed method using authentic loan data and publicly available credit default records from a prominent consumer platform in China. Our empirical research suggests that the characteristics of user online behavior are significantly predictive of loan defaults, demonstrating asymmetry at different stages of default.

Suggested Citation

  • Weng, Futian & Zhu, Miao & Buckle, Mike & Hajek, Petr & Abedin, Mohammad Zoynul, 2025. "Class imbalance Bayesian model averaging for consumer loan default prediction: The role of soft credit information," Research in International Business and Finance, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:riibaf:v:74:y:2025:i:c:s0275531924005154
    DOI: 10.1016/j.ribaf.2024.102722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531924005154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2024.102722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fitzpatrick, Trevor & Mues, Christophe, 2021. "How can lenders prosper? Comparing machine learning approaches to identify profitable peer-to-peer loan investments," European Journal of Operational Research, Elsevier, vol. 294(2), pages 711-722.
    2. Zhang, Hao & Shi, Yuxin & Yang, Xueran & Zhou, Ruiling, 2021. "A firefly algorithm modified support vector machine for the credit risk assessment of supply chain finance," Research in International Business and Finance, Elsevier, vol. 58(C).
    3. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    4. Ding, Shusheng & Cui, Tianxiang & Bellotti, Anthony Graham & Abedin, Mohammad Zoynul & Lucey, Brian, 2023. "The role of feature importance in predicting corporate financial distress in pre and post COVID periods: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 90(C).
    5. Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Morshadul Hasan & Thuhid Noor & Jiechao Gao & Muhammad Usman & Mohammad Zoynul Abedin, 2023. "Rural Consumers’ Financial Literacy and Access to FinTech Services," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 780-804, June.
    7. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    8. Jiang, Ping & Liu, Zhenkun & Abedin, Mohammad Zoynul & Wang, Jianzhou & Yang, Wendong & Dong, Qingli, 2024. "Profit-driven weighted classifier with interpretable ability for customer churn prediction," Omega, Elsevier, vol. 125(C).
    9. Gao, Qiang & Lin, Mingfeng & Sias, Richard, 2023. "Words Matter: The Role of Readability, Tone, and Deception Cues in Online Credit Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 58(1), pages 1-28, February.
    10. Gao, Renzhi & Yao, Xiaoyu & Wang, Zhao & Abedin, Mohammad Zoynul, 2024. "Sentiment classification of time-sync comments: A semi-supervised hierarchical deep learning method," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1159-1173.
    11. Philipp Borchert & Kristof Coussement & Arno de Caigny & Jochen de Weerdt, 2023. "Extending business failure prediction models with textual website content using deep learning," Post-Print hal-03976762, HAL.
    12. Cuiqing Jiang & Zhao Wang & Ruiya Wang & Yong Ding, 2018. "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending," Annals of Operations Research, Springer, vol. 266(1), pages 511-529, July.
    13. Loutfi, Ahmad Amine, 2022. "A framework for evaluating the business deployability of digital footprint based models for consumer credit," Journal of Business Research, Elsevier, vol. 152(C), pages 473-486.
    14. Md Shajalal & Petr Hajek & Mohammad Zoynul Abedin, 2023. "Product backorder prediction using deep neural network on imbalanced data," International Journal of Production Research, Taylor & Francis Journals, vol. 61(1), pages 302-319, January.
    15. Kowalewski, Oskar & Pisany, Paweł, 2022. "Banks' consumer lending reaction to fintech and bigtech credit emergence in the context of soft versus hard credit information processing," International Review of Financial Analysis, Elsevier, vol. 81(C).
    16. Wang, Yao & Drabek, Zdenek & Wang, Zhengwei, 2022. "The role of social and psychological related soft information in credit analysis: Evidence from a Fintech Company," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 96(C).
    17. Xiao, Jin & Zhong, Yu & Jia, Yanlin & Wang, Yadong & Li, Ruoyi & Jiang, Xiaoyi & Wang, Shouyang, 2024. "A novel deep ensemble model for imbalanced credit scoring in internet finance," International Journal of Forecasting, Elsevier, vol. 40(1), pages 348-372.
    18. Mingfeng Lin & Nagpurnanand R. Prabhala & Siva Viswanathan, 2013. "Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending," Management Science, INFORMS, vol. 59(1), pages 17-35, August.
    19. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    20. Alexander W. Butler & Jess Cornaggia & Umit G. Gurun, 2017. "Do Local Capital Market Conditions Affect Consumers’ Borrowing Decisions?," Management Science, INFORMS, vol. 63(12), pages 4175-4187, December.
    21. Jie Ding & Vahid Tarokh & Yuhong Yang, 2018. "Model Selection Techniques -- An Overview," Papers 1810.09583, arXiv.org.
    22. Yang, Fan & Abedin, Mohammad Zoynul & Hajek, Petr, 2024. "An explainable federated learning and blockchain-based secure credit modeling method," European Journal of Operational Research, Elsevier, vol. 317(2), pages 449-467.
    23. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    24. Luo, Chunlin & Zhou, Xiaoyang & Lev, Benjamin, 2022. "Core, shapley value, nucleolus and nash bargaining solution: A Survey of recent developments and applications in operations management," Omega, Elsevier, vol. 110(C).
    25. Wang, Zheqi & Crook, Jonathan & Andreeva, Galina, 2020. "Reducing estimation risk using a Bayesian posterior distribution approach: Application to stress testing mortgage loan default," European Journal of Operational Research, Elsevier, vol. 287(2), pages 725-738.
    26. Zha, Yong & Wang, Yuting & Li, Quan & Yao, Wenying, 2022. "Credit offering strategy and dynamic pricing in the presence of consumer strategic behavior," European Journal of Operational Research, Elsevier, vol. 303(2), pages 753-766.
    27. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    28. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
    29. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    30. Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
    31. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    32. Fahmida E. Moula & Chi Guotai & Mohammad Zoynul Abedin, 2017. "Credit default prediction modeling: an application of support vector machine," Risk Management, Palgrave Macmillan, vol. 19(2), pages 158-187, May.
    33. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    34. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    35. Petr Hajek & Mohammad Zoynul Abedin & Uthayasankar Sivarajah, 2023. "Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework," Information Systems Frontiers, Springer, vol. 25(5), pages 1985-2003, October.
    36. Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
    37. Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
    38. Zhao, Yang & Goodell, John W. & Dong, Qingli & Wang, Yong & Abedin, Mohammad Zoynul, 2022. "Overcoming spatial stratification of fintech inclusion: Inferences from across Chinese provinces to guide policy makers," International Review of Financial Analysis, Elsevier, vol. 84(C).
    39. Chi Guotai & Mohammad Zoynul Abedin & Fahmida–E Moula, 2017. "Modeling credit approval data with neural networks: an experimental investigation and optimization," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(2), pages 224-240, March.
    40. Junbo Wang & Yun Wang & Chunchi Wu & Xiaoguang Yang & Lin Zhao, 2024. "Social Proximity, Information, and Incentives in Local Bank Lending," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 13(1), pages 80-146.
    41. Mohammad Zoynul Abedin & M. Kabir Hassan & Imran Khan & Ivan F. Julio, 2022. "Feature Transformation for Corporate Tax Default Prediction: Application of Machine Learning Approaches," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 39(04), pages 1-26, August.
    42. Mohammad Mahbobi & Salman Kimiagari & Marriappan Vasudevan, 2023. "Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks," Annals of Operations Research, Springer, vol. 330(1), pages 609-637, November.
    43. Silvia Figini & Paolo Giudici, 2017. "Credit risk assessment with Bayesian model averaging," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(19), pages 9507-9517, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Guotai & Dong, Bingjie & Zhou, Ying & Jin, Peng, 2024. "Long-horizon predictions of credit default with inconsistent customers," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    2. Ma, Xuejiao & Che, Tianqi & Jiang, Qichuan, 2025. "A three-stage prediction model for firm default risk: An integration of text sentiment analysis," Omega, Elsevier, vol. 131(C).
    3. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    4. Katsafados, Apostolos G. & Leledakis, George N. & Pyrgiotakis, Emmanouil G. & Androutsopoulos, Ion & Fergadiotis, Manos, 2024. "Machine learning in bank merger prediction: A text-based approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 783-797.
    5. Hornuf, Lars & Safari, Kulondwa & Voshaar, Johannes, 2025. "Mobile fintech adoption in Sub-Saharan Africa: A systematic literature review and meta-analysis," Research in International Business and Finance, Elsevier, vol. 73(PA).
    6. Maarouf, Abdurahman & Feuerriegel, Stefan & Pröllochs, Nicolas, 2025. "A fused large language model for predicting startup success," European Journal of Operational Research, Elsevier, vol. 322(1), pages 198-214.
    7. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    8. Gao, Hongming & Zhu, Hui & Ma, Haiying, 2024. "Peer effect and funding success: Analyzing friendship networks in online credit markets," Finance Research Letters, Elsevier, vol. 66(C).
    9. Vives, Xavier & Ye, Zhiqiang, 2025. "Information technology and lender competition," Journal of Financial Economics, Elsevier, vol. 163(C).
    10. Vairetti, Carla & Aránguiz, Ignacio & Maldonado, Sebastián & Karmy, Juan Pablo & Leal, Alonso, 2024. "Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1108-1118.
    11. Peón, David & Antelo, Manel & Sun, Yanfei, 2024. "Market competition and strategic interaction in the Spanish FinTech industry," Research in International Business and Finance, Elsevier, vol. 70(PB).
    12. Tu, Jiancheng & Wu, Zhibin, 2025. "Inherently interpretable machine learning for credit scoring: Optimal classification tree with hyperplane splits," European Journal of Operational Research, Elsevier, vol. 322(2), pages 647-664.
    13. Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
    14. Kräussl, Roman & Kräussl, Zsofia & Pollet, Joshua & Rinne, Kalle, 2024. "The performance of marketplace lenders," Journal of Banking & Finance, Elsevier, vol. 162(C).
    15. Wangcheng Yan & Wenjun Zhou, 2023. "Is blockchain a cure for peer-to-peer lending?," Annals of Operations Research, Springer, vol. 321(1), pages 693-716, February.
    16. Ma, Xi-Ao & Liu, Haibo & Liu, Yi & Zhang, Justin Zuopeng, 2025. "Multi-label feature selection considering label importance-weighted relevance and label-dependency redundancy," European Journal of Operational Research, Elsevier, vol. 322(1), pages 215-236.
    17. Ligang Zhou & Chao Ma, 2023. "A Comparison of Different Rules on Loans Evaluation in Peer-to-Peer Lending by Gradient Boosting Models Under Moving Windows with Two Timestamps," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1481-1504, December.
    18. Yufei Xia & Lingyun He & Yinguo Li & Nana Liu & Yanlin Ding, 2020. "Predicting loan default in peer‐to‐peer lending using narrative data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 260-280, March.
    19. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    20. Lu, Haitian & Wang, Bo & Wang, Haizhi & Zhao, Tianyu, 2020. "Does social capital matter for peer-to-peer-lending? Empirical evidence," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:74:y:2025:i:c:s0275531924005154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.