Modeling credit approval data with neural networks: an experimental investigation and optimization
Author
Abstract
Suggested Citation
DOI: 10.3846/16111699.2017.1280844
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Omar H. Fares & Irfan Butt & Seung Hwan Mark Lee, 2023. "Utilization of artificial intelligence in the banking sector: a systematic literature review," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 28(4), pages 835-852, December.
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Mohammad Shamsu Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib & Kunpeng Yuan, 2022. "Modeling credit risk with a multi‐stage hybrid model: An alternative statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1386-1415, November.
- Amine Belhadi & Sachin S. Kamble & Venkatesh Mani & Imane Benkhati & Fatima Ezahra Touriki, 2025. "An ensemble machine learning approach for forecasting credit risk of agricultural SMEs’ investments in agriculture 4.0 through supply chain finance," Annals of Operations Research, Springer, vol. 345(2), pages 779-807, February.
- Hornuf, Lars & Safari, Kulondwa & Voshaar, Johannes, 2025. "Mobile fintech adoption in Sub-Saharan Africa: A systematic literature review and meta-analysis," Research in International Business and Finance, Elsevier, vol. 73(PA).
- Weixin Sun & Heli Chen & Feng Liu & Yong Wang, 2025. "Point and interval prediction of crude oil futures prices based on chaos theory and multiobjective slime mold algorithm," Annals of Operations Research, Springer, vol. 345(2), pages 1003-1033, February.
- Weng, Futian & Zhu, Miao & Buckle, Mike & Hajek, Petr & Abedin, Mohammad Zoynul, 2025. "Class imbalance Bayesian model averaging for consumer loan default prediction: The role of soft credit information," Research in International Business and Finance, Elsevier, vol. 74(C).
- Mohammad S. Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib, 2022. "Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3713-3729, July.
- Mohammad Zoynul Abedin & Mahmudul Hasan Moon & M. Kabir Hassan & Petr Hajek, 2025. "Deep learning-based exchange rate prediction during the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 345(2), pages 1335-1386, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jbemgt:v:18:y:2017:i:2:p:224-240. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TBEM20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.