IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bayesian Kernel-Based Classification for Financial Distress Detection

  • T. VAN GESTEL
  • B. BAESENS
  • J. A.K. SUYKENS
  • D. VAN DEN POEL

    ()

  • D.-E. BAESTAENS
  • BM. WILLEKENS

Corporate credit granting is a key commercial activity of financial institutions nowadays. A critical first step in the credit granting process usually involves a careful financial analysis of the creditworthiness of the potential client. Wrong decisions result either in foregoing valuable clients or, more severely, in substantial capital losses if the client subsequently defaults. It is thus of crucial importance to develop models that estimate the probability of corporate bankruptcy with a high degree of accuracy. Many studies focused on the use of financial ratios in linear statistical models, such as linear discriminant analysis and logistic regression. However, the obtained error rates are often high. In this paper, Least Squares Support Vector Machine (LS-SVM) classifiers, also known as kernel Fisher discriminant analysis, are applied within the Bayesian evidence framework in order to automatically infer and analyze the creditworthiness of potential corporate clients. The inferred posterior class probabilities of bankruptcy are then used to analyze the sensitivity of the classifier output with respect to the given inputs and to assist in the credit assignment decision making process. The suggested nonlinear kernel based classifiers yield better performances than linear discriminant analysis and logistic regression when applied to a real-life data set concerning commercial credit granting to mid-cap Belgian and Dutch firms.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://wps-feb.ugent.be/Papers/wp_04_247.pdf
Download Restriction: no

Paper provided by Ghent University, Faculty of Economics and Business Administration in its series Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium with number 04/247.

as
in new window

Length: 40 pages
Date of creation: May 2004
Date of revision:
Handle: RePEc:rug:rugwps:04/247
Contact details of provider: Postal: Hoveniersberg 4, B-9000 Gent
Phone: ++ 32 (0) 9 264 34 61
Fax: ++ 32 (0) 9 264 35 92
Web page: http://www.ugent.be/eb

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
  2. Selwyn Piramuthu & Harish Ragavan & Michael J. Shaw, 1998. "Using Feature Construction to Improve the Performance of Neural Networks," Management Science, INFORMS, vol. 44(3), pages 416-430, March.
  3. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
  4. James M. Hutchinson & Andrew W. Lo & Tomaso Poggio, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks," NBER Working Papers 4718, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:04/247. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nathalie Verhaeghe)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.