IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v33y2013icp747-761.html
   My bibliography  Save this article

Small sample-oriented case-based kernel predictive modeling and its economic forecasting applications under n-splits-k-times hold-out assessment

Author

Listed:
  • Li, Hui
  • Hong, Lu-Yao
  • He, Jia-Xun
  • Xu, Xuan-Guo
  • Sun, Jie

Abstract

In most situations, we can only collect small samples for modeling specific economic forecasting problems. Thus, the availability of accurate predictive model for small samples is vital for solving these problems. This research makes an early investigation on the small sample-oriented case-based kernel predictive method (SSOCBKPM) by integrating support vector machine in case reuse of case-based reasoning, and conducts an early application of SSOCBKPM in binary economic forecasting under the n-splits-k-times hold-out method. After business cases consisting of small samples are represented, the most similar cases from small samples to the current problem are retrieved from small case base. The most similar cases retrieved from small samples are then mapped into a higher dimensional space by kernel function to be candidate support vectors, in which dimension a hyper-plane of support vector machine is constructed by reusing the most similar cases. Two datasets for firm failure prediction and one dataset for loan failure prediction were used to test performance of SSOCBKPM. 100 times' random selection of each of the 20%, 35%, 50%, 65%, and 80% of the total samples are respectively used in training to simulate the availability of samples. The results indicate that SSOCBKPM improves accuracy, stability and sensitivity of the classical CBR significantly; and improves performance of SVM significantly when the volume of the training samples becomes smaller. The SSOCBKPM is more useful in economic forecasting than case-based reasoning and support vector machine since the proportion of available samples is commonly small and less than 50% of the population.

Suggested Citation

  • Li, Hui & Hong, Lu-Yao & He, Jia-Xun & Xu, Xuan-Guo & Sun, Jie, 2013. "Small sample-oriented case-based kernel predictive modeling and its economic forecasting applications under n-splits-k-times hold-out assessment," Economic Modelling, Elsevier, vol. 33(C), pages 747-761.
  • Handle: RePEc:eee:ecmode:v:33:y:2013:i:c:p:747-761
    DOI: 10.1016/j.econmod.2013.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313001995
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahut, Jean-Michel & Mili, Mehdi, 2011. "Banking distress in MENA countries and the role of mergers as a strategic policy to resolve distress," Economic Modelling, Elsevier, vol. 28(1), pages 138-146.
    2. Beddoe, Gareth R. & Petrovic, Sanja, 2006. "Selecting and weighting features using a genetic algorithm in a case-based reasoning approach to personnel rostering," European Journal of Operational Research, Elsevier, vol. 175(2), pages 649-671, December.
    3. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
    4. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    5. Hui Li & Jie Sun, 2010. "Forecasting business failure in China using case-based reasoning with hybrid case respresentation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 486-501.
    6. Gestel, Tony Van & Baesens, Bart & Suykens, Johan A.K. & Van den Poel, Dirk & Baestaens, Dirk-Emma & Willekens, Marleen, 2006. "Bayesian kernel based classification for financial distress detection," European Journal of Operational Research, Elsevier, vol. 172(3), pages 979-1003, August.
    7. Zhuang, Zoe Y. & Churilov, Leonid & Burstein, Frada & Sikaris, Ken, 2009. "Combining data mining and case-based reasoning for intelligent decision support for pathology ordering by general practitioners," European Journal of Operational Research, Elsevier, vol. 195(3), pages 662-675, June.
    8. Li, Hui & Sun, Jie, 2009. "Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II," European Journal of Operational Research, Elsevier, vol. 197(1), pages 214-224, August.
    9. Bassetto, Camila F. & Kalatzis, Aquiles E.G., 2011. "Financial distress, financial constraint and investment decision: Evidence from Brazil," Economic Modelling, Elsevier, vol. 28(1-2), pages 264-271, January.
    10. Hubert Ooghe & Christophe Spaenjers, 2010. "A note on performance measures for business failure prediction models," Applied Economics Letters, Taylor & Francis Journals, vol. 17(1), pages 67-70, January.
    11. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    12. Korol, Tomasz, 2013. "Early warning models against bankruptcy risk for Central European and Latin American enterprises," Economic Modelling, Elsevier, vol. 31(C), pages 22-30.
    13. Lin, Chiun-Sin & Chiu, Sheng-Hsiung & Lin, Tzu-Yu, 2012. "Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2583-2590.
    14. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    15. Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
    16. Öğüt, Hulisi & Doğanay, M. Mete & Ceylan, Nildağ Başak & Aktaş, Ramazan, 2012. "Prediction of bank financial strength ratings: The case of Turkey," Economic Modelling, Elsevier, vol. 29(3), pages 632-640.
    17. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    18. Bassetto, Camila F. & Kalatzis, Aquiles E.G., 2011. "Financial distress, financial constraint and investment decision: Evidence from Brazil," Economic Modelling, Elsevier, vol. 28(1), pages 264-271.
    19. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    20. Adrian Gepp & Kuldeep Kumar & Sukanto Bhattacharya, 2010. "Business failure prediction using decision trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 536-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanke, Peter & Barros, Carlos Pestana, 2016. "Efficiency drivers in Brazilian insurance: A two-stage DEA meta frontier-data mining approach," Economic Modelling, Elsevier, vol. 53(C), pages 8-22.
    2. Zheng-Xin Wang, 2017. "A Weighted Non-linear Grey Bernoulli Model for Forecasting Non-linear Economic Time Series with Small Data Sets," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 169-186.
    3. Mili, Medhi & Sahut, Jean-Michel & Teulon, Frédéric, 2018. "Modeling recovery rates of corporate defaulted bonds in developed and developing countries," Emerging Markets Review, Elsevier, vol. 36(C), pages 28-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:33:y:2013:i:c:p:747-761. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.