IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v13y2012i2p387-404.html
   My bibliography  Save this article

Forecasting of migration matrices in business demography

Author

Listed:
  • Paweł Zając
  • Piotr Gurgul

Abstract

This paper demonstrates that the forecast of migration matrices can be conducted by means of updating procedures, well-known in the I-O theory. The authors use some of the most popular I-O updating procedures (RAS and some non-biproportional approaches) and calculate measures of the ex-post error of predictions. While taking into account the measures of distance between two matrices, a ranking of forecasting methods of migration matrices (forecast horizon one) is established. Finally, the advantages and drawbacks of particular forecasting methods with respect to one-step ex-post forecasts of migration matrices are discussed.

Suggested Citation

  • Paweł Zając & Piotr Gurgul, 2012. "Forecasting of migration matrices in business demography," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(2), pages 387-404, June.
  • Handle: RePEc:csb:stintr:v:13:y:2012:i:2:p:387-404
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v13_2012_i2_n14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Randall Jackson & Alan Murray, 2004. "Alternative Input-Output Matrix Updating Formulations," Economic Systems Research, Taylor & Francis Journals, vol. 16(2), pages 135-148.
    2. Jones,Stewart & Hensher,David A. (ed.), 2008. "Advances in Credit Risk Modelling and Corporate Bankruptcy Prediction," Cambridge Books, Cambridge University Press, number 9780521689540, November.
    3. J R Roy & D F Batten & P F Lesse, 1982. "Minimizing Information Loss in Simple Aggregation," Environment and Planning A, , vol. 14(7), pages 973-980, July.
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    5. Wilcox, Jw, 1971. "Simple Theory Of Financial Ratios As Predictors Of Failure," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 9(2), pages 389-345.
    6. Michael Lahr & Louis de Mesnard, 2004. "Biproportional Techniques in Input-Output Analysis: Table Updating and Structural Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 16(2), pages 115-134.
    7. Peel, M. J. & Peel, D. A., 1988. "A multilogit approach to predicting corporate failure--Some evidence for the UK corporate sector," Omega, Elsevier, vol. 16(4), pages 309-318.
    8. Matthias Kahl, 2002. "Economic Distress, Financial Distress, and Dynamic Liquidation," Journal of Finance, American Finance Association, vol. 57(1), pages 135-168, February.
    9. François Coppens & Fabienne Verduyn, 2009. "Analysis of business demography using markov chains : an application to Belgian data," Working Paper Research 170, National Bank of Belgium.
    10. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 10(1), pages 167-179.
    11. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 4, pages 71-111.
    12. Sergei A. Davydenko & Julian R. Franks, 2008. "Do Bankruptcy Codes Matter? A Study of Defaults in France, Germany, and the U.K," Journal of Finance, American Finance Association, vol. 63(2), pages 565-608, April.
    13. Platt, Harlan D. & Platt, Marjorie B., 1991. "A note on the use of industry-relative ratios in bankruptcy prediction," Journal of Banking & Finance, Elsevier, vol. 15(6), pages 1183-1194, December.
    14. Blum, M, 1974. "Failing Company Discriminant-Analysis," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 12(1), pages 1-25.
    15. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    16. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 18(1), pages 109-131.
    17. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 22, pages 59-82.
    18. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
    19. Jones,Stewart & Hensher,David A. (ed.), 2008. "Advances in Credit Risk Modelling and Corporate Bankruptcy Prediction," Cambridge Books, Cambridge University Press, number 9780521869287, November.
    20. Paweł Zając & Henryk Gurgul, 2011. "The dynamic model of birth and death of enterprises," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 12(2), pages 381-400, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    2. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    3. Antonio David Somoza Lopez & Josep Vallverdu Calafell, 2003. "Una comparacion de la seleccion de los ratios contables en los modelos contable-financieros de prediccion de la insolvencia empresarial," Working Papers in Economics 94, Universitat de Barcelona. Espai de Recerca en Economia.
    4. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    5. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    6. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    7. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    8. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
    9. Jayasekera, Ranadeva, 2018. "Prediction of company failure: Past, present and promising directions for the future," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 196-208.
    10. McGurr, Paul T. & DeVaney, Sharon A., 1998. "Predicting Business Failure of Retail Firms: An Analysis Using Mixed Industry Models," Journal of Business Research, Elsevier, vol. 43(3), pages 169-176, November.
    11. García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
    12. Petr Jakubík & Petr Teplý, 2011. "The JT Index as an Indicator of Financial Stability of Corporate Sector," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 157-176.
    13. Christine V. Zavgren & Michael T. Dugan & James M. Reeve, 1988. "The Association Between Probabilities of Bankruptcy and Market Responses—A Test of Market Anticipation," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 15(1), pages 27-45, March.
    14. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    15. Goriunov Dmytro & Venzhyk Katerina, 2013. "Loan Default Prediction in Ukrainian Retail Banking," EERC Working Paper Series 13/07e, EERC Research Network, Russia and CIS.
    16. Kerstin Lopatta & Mario Albert Gloger & Reemda Jaeschke, 2017. "Can Language Predict Bankruptcy? The Explanatory Power of Tone in 10‐K Filings," Accounting Perspectives, John Wiley & Sons, vol. 16(4), pages 315-343, December.
    17. Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
    18. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    19. Akarsh Kainth & Ranik Raaen Wahlstrøm, 2021. "Do IFRS Promote Transparency? Evidence from the Bankruptcy Prediction of Privately Held Swedish and Norwegian Companies," JRFM, MDPI, vol. 14(3), pages 1-15, March.
    20. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:13:y:2012:i:2:p:387-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek The email address of this maintainer does not seem to be valid anymore. Please ask Beata Witek to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.